激光与光电子学进展, 2013, 50 (3): 030008, 网络出版: 2013-02-06   

二维光子晶体波导研究进展 下载: 1057次

Research Progress of Two-Dimensional Photonic Crystal Waveguides
作者单位
宁波大学信息科学与工程学院 红外材料与器件实验室, 浙江 宁波 315211
摘要
二维光子晶体波导具有特殊的光子能带结构、可控色散、极小的几何尺寸和极强的非线性特性,近年来在非线性光学、光学逻辑门、全光缓存、光功率分束器、光子晶体激光器以及高灵敏度传感器等领域引起了广泛的关注。介绍了二维光子晶体波导的制备方法,总结了其传输损耗、多模耦合的自成像效应和慢光效应等方面的研究进展,并特别提到基于硫系玻璃这一特殊基质的二维光子晶体波导,最后展望了二维光子晶体波导的发展前景进行了展望。
Abstract
Two-dimensional photonic crystal waveguides have special photonic band structure, controllable optical dispersion, small physical dimension and high nonlinearity, which draw wide attention in areas of nonlinear optics, optical logic gates, all-optical buffer, optical-power splitter, photonic-crystal lasers and high-sensitivity sensor. The fabrication technique of two-dimensional photonic crystal waveguides is introduced, the propagation loss, self-imaging effect of multi-mode coupling and slow light effect are summarized. In particular, two-dimensional photonic crystal waveguides based on chalcogenide glasses are mentioned. At last, the development prospect of two-dimensional photonic crystal waveguides is discussed.
参考文献

[1] S. John. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486~2489

[2] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059~2062

[3] 快素兰, 章俞之, 胡行方. 光子晶体的能带结构、潜在应用和制备方法[J]. 无机材料学报, 2001, 16(2): 193~199

    Kuai Sulan, Zhang Yuzhi, Hu Xingfang. Band structures, applications and preparations of photonic crystals[J]. J. Inorganic Materials, 2001, 16(2): 193~199

[4] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362

[5] R. D. Meade, A. Devenyi, J. Joannopoulos et al.. Novel applications of photonic band gap materials: low-loss bends and high Q cavities[J]. J. Appl. Phys., 1994, 75(9): 4753~4755

[6] Y. Zhang, Z. Li, B. Li. Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves[J]. Opt. Express, 2006, 14(7): 2679~2689

[7] D. Modotto, M. Conforti, A. Locatelli et al.. Imaging properties of multimode photonic crystal waveguides and waveguide arrays[J]. J. Lightwave Technol., 2007, 25(1): 402~409

[8] Y. Zhao, Y. Zhang, Q. Wang. High sensitivity gas sensing method based on slow light in photonic crystal waveguide[J]. Sensors and Actuators B, 2012, 173: 28~31

[9] C. Husko, T. Vo, B. Corcoran et al.. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide[J]. Opt. Express, 2011, 19(21): 20681~20690

[10] J. K. Yang, H. Noh, M. J. Rooks et al.. Lasing in localized modes of a slow light photonic crystal waveguide[J]. Appl. Phys. Lett., 2011, 98(24): 241107

[11] T. Baba, T. Kawaaski, H. Sasaki et al.. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide[J]. Opt. Express, 2008, 16(12): 9245~9253

[12] T. F. Krauss. Slow light in photonic crystal waveguides[J]. J. Phys. D: Appl. Phys., 2007, 40(9): 2666~2670

[13] M. Shinkawa, N. Ishikura, Y. Hama et al.. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process[J]. Opt. Express, 2011, 19(22): 22208~22218

[14] C. Monat, B. Corcoran, M. Ebnali-Heidari et al.. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides[J]. Opt. Express, 2009, 17(4): 2944~2953

[15] A. Baron, A. Ryasnyanskiy, N. Dubreuil et al.. Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide[J]. Opt. Express, 2009, 17(2): 552~557

[16] 崔乃迪, 梁静秋, 梁中翥 等. 光子晶体及二维光子晶体波导[J]. 光机电信息, 2009, 26(10): 19~27

    Cui Naidi, Liang Jingqiu, Liang Zhongzhu et al.. Photonic crystals and 2-D photonic crystal waveguides[J]. OME Information, 2009, 26(10): 19~27

[17] W. Kuang, C. Kim, A. Stapleton et al.. Calculated out-of-plane transmission loss for photonic-crystal slab waveguides[J]. Opt. Lett., 2003, 28(19): 1781~1783

[18] M. Kotlyar, T. Karle, M. Settle et al.. Low-loss photonic crystal defect waveguides in InP[J]. Appl. Phys. Lett., 2004, 84(18): 3588~3590

[19] A. Di Falco, M. Massari, M. Scullion et al.. Propagation losses of slotted photonic crystal waveguides[J]. IEEE Photon. J., 2012, 4(5): 1536~1541

[20] Y. Hamachi, S. Kubo, T. Baba. Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide[J]. Opt. Lett., 2009, 34(7): 1072~1074

[21] T. F. Krauss, R. M. D. L. Rue, S. Brand. Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths[J]. Nature, 1996, 383(6602): 699~702

[22] L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen et al.. Photonic crystal waveguides with semi-slow light and tailored dispersion properties[J]. Opt. Express, 2006, 14(20): 9444~9450

[23] A. M. Malvezzi, F. Cattaneo, G. Vecchi et al.. Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2122~2128

[24] W. Jia, J. Deng, H. Wu et al.. Design and fabrication of high-efficiency photonic crystal power beam splitters[J]. Opt. Lett., 2011, 36(20): 4077~4079

[25] M. Shih, W. Kim, W. Kuang et al.. Two-dimensional photonic crystal Mach-Zehnder interferometers[J]. Appl. Phys. Lett., 2004, 84(4): 460~462

[26] K. Suzuki, Y. Hamachi, T. Baba. Fabrication and characterization of chalcogenide glass photonic crystal waveguides[J]. Opt. Express, 2009, 17(25): 22393~22400

[27] C. Liguda, G. Bottger, A. Kuligk et al.. Polymer photonic crystal slab waveguides[J]. Appl. Phys. Lett., 2001, 78(17): 2434~2436

[28] 解灵运, 张冶金, 彭小舟 等. 基于SOI 的光子晶体波导的研究[J]. 半导体光电, 2003, 24(6): 392~395

    Xie Lingyun, Zhang Yejin, Peng Xiaozhou et al.. Study on SOI-based photonic crystal waveguides[J]. Semiconductor Optoelectronics, 2003, 24(6): 392~395

[29] Zhou Changzhu, Liu Yazhao, Li Zhiyuan. Waveguide bend of 90° in two-dimensional triangular lattice silicon photonic crystal slabs[J]. Chin. Phys. Lett., 2010, 27(8): 084203

[30] 韩守振, 田洁, 冯帅 等. 二维平板光子晶体直波导的制备和光传输特性的测量[J]. 物理学报, 2005, 54(12): 5659~5662

    Han Shouzhen, Tian Jie, Feng Shuai et al.. Fabrication of straight waveguide in two-dimensional photonic crystal slab and its light propagation characteristics[J]. Acta Physica Sinica, 2005, 54(12): 5659~5662

[31] M. Mulot, A. Syntjoki, S. Arpiainen et al.. Slow light propagation in photonic crystal waveguides with ring-shaped holes[J]. J. Opt. A: Pure Appl. Opt., 2007, 9(9): S415~S418

[32] A. Xing, M. Darvanco, D. J. Blumenthal et al.. InP photonic crystal membrane structures: fabrication accuracy and optical performance[J]. Appl. Phys. Lett., 2004, 85(4): 522~524

[33] P. Borel, L. Frandsen, M. Thorhauge et al.. Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light[J]. Opt. Express, 2003, 11(15): 1757~1762

[34] J. Li, Y. Liu, X. Xie et al.. Fabrication of photonic crystals with functional defects by one-step holographic lithography[J]. Opt. Express, 2008, 16(17): 12899~12904

[35] T. Tada, V. V. Poborchii, T. Kanayama. Channel waveguides fabricated in 2D photonic crystals of Si nanopillars[J]. Microelectronic Engineering, 2002, 63(1): 259~265

[36] T. Baba, A. Motegi, T. Iwai et al.. Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate[J]. IEEE J. Quant. Electron., 2002, 38(7): 743~752

[37] L. Ofaolain, X. Yuan, D. McIntyre et al.. Low-loss propagation in photonic crystal waveguides[J]. Electron. Lett., 2006, 42(25): 1454~1455

[38] R. Kappeler, P. Kaspar, H. Jackel. Loss-relevant structural imperfections in substrate-type photonic crystal waveguides[J]. J. Lightwave Technol., 2011, 29(21): 3156~3166

[39] T. White, L. O′Faolain, J. Li et al.. Silica-embedded silicon photonic crystal waveguides[J]. Opt. Express, 2008, 16(21): 17076~17081

[40] K. Inoue, Y. Sugimoto, N. Ikeda et al.. Ultra-small GaAs-photonic-crystal-slab-waveguide-based near-infrared components: fabrication, guided-mode identification, and estimation of low-loss and broad-band-width in straight-waveguides, 60° bends and Y-splitters[J]. Jpn. J. Appl. Phys., 2004, 43(9A): 6112~6114

[41] N. Ikeda, Y. Sugimoto, Y. Tanaka et al.. Low propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes[J]. IEEE J. Sel. Areas in Commun., 2005, 23(7): 1315~1320

[42] J. Zimmermann, M. Kamp, R. Schwertberger et al.. Efficient light transmission through InP-based photonic crystal waveguides[J]. Electron. Lett., 2002, 38(4): 178~180

[43] P. Ma, P. Kaspar, Y. Fedoryshyn et al.. InP. ased planar photonic crystal waveguide in honeycomb lattice geometry for TM-polarized light[J]. Opt. Lett., 2009, 34(10): 1558~1560

[44] P. Kaspar, R. Kappeler, H. Jckel et al.. Toward low-loss photonic crystal waveguides in InP/InGaAsP heterostructures[J]. Opt. Lett., 2012, 37(17): 3717~3719

[45] J. H. Chen, Y. T. Huang, Y. L. Yang et al.. Design, Fabrication, and characterization of Si-based ARROW-B photonic crystal sharp-bend waveguides and power splitters[J]. J. Lightwave Technol., 2012, 30(14): 2345~2351

[46] X. Gai, T. Han, A. Prasad et al.. Progress in optical waveguides fabricated from chalcogenide glasses[J]. Opt. Express, 2010, 18(25): 26635~26646

[47] M. Shih, W. J. Kim, W. Kuang et al.. Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides[J]. Appl. Phys. Lett., 2005, 86(19): 191104

[48] S. Bakhshi, M. K. Moravvej-Farshi, M. Ebnali-Heidari. Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration[J]. Appl. Opt., 2011, 50(21): 4048~4053

[49] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications[J]. J. Lightwave Technol., 1995, 13(4): 615~627

[50] A. Martinez, F. Cuesta, J. Marti. Ultrashort 2-D photonic crystal directional couplers[J]. IEEE Photon. Technol. Lett., 2003, 15(5): 694~696

[51] 徐旭明, 李未, 方利广 等. 基于自成像多模干涉的光子晶体波导1×2分束器[J]. 光通信研究, 2008, 34(6): 34~36

    Xu Xuming, Li Wei, Fang Liguang et al.. Self-imaging based multimode interference photonic crystal waveguide 1×2 splitter[J]. Study on Optical Communications, 2008, 34(6): 34~36

[52] S. Boscolo, M. Midrio, C. G. Someda. Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides[J]. IEEE J. Quant. Electron., 2002, 38(1): 47~53

[53] 金晓君. 基于多模干涉的多波长光子晶体波分复用器特性研究[D]. 南京: 南京邮电大学, 2011. 30~56

    Jin Xiaojun. The Study on Characteristics of Multi-Wavelength Photonic Crystal Wavelength Division Multiplexers Based on Multimode Interference Theory[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2011. 30~56

[54] M. Povinelli, S. Johnson, J. Joannopoulos. Slow-light, band-edge waveguides for tunable time delays[J]. Opt. Express, 2005, 13(18): 7145~7159

[55] C. Liu, Z. Dutton, C. H. Behroozi et al.. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 2001, 409(6819): 490~493

[56] H. Gersen, T. Karle, R. Engelen et al.. Real-space observation of ultraslow light in photonic crystal waveguides[J]. Phys. Rev. Lett., 2005, 94(7): 073903

[57] T. Baba. Slow light in photonic crystals[J]. Nature Photon., 2008, 2(8): 465~473

[58] L. V. Hau, S. E. Harris, Z. Dutton et al.. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594~598

[59] M. Notomi, K. Yamada, A. Shinya et al.. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Phys. Rev. Lett., 2001, 87(25): 253902

[60] Y. A. Vlasov, M. O'Boyle, H. F. Hamann et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65~69

[61] J. Li, T. P. White, L. O′Faolain et al.. Systematic design of flat band slow light in photonic crystal waveguides[J]. Opt. Express, 2008, 16(9): 6227~6232

[62] S. Rahimi, A. Hosseini, X. Xu et al.. Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor[J]. Opt. Express, 2011, 19(22): 21832~21841

[63] A. Casas-Bedoya, C. Husko, C. Monat et al.. Slow light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration[J]. Opt. Lett., 2012, 37(20): 4215~4217

[64] A. Syntjoki, M. Mulot, J. Ahopelto et al.. Dispersion engineering of photonic crystal waveguides with ring-shaped holes[J]. Opt. Express, 2007, 15(13): 8323~8328

[65] B. Meng, L. Wang, W. Huang et al.. Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes[J]. Appl. Opt., 2012, 51(23): 5735~5742

[66] L. Dai, T. Li, C. Jiang. Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide[J]. J. Opt. Soc. Am. B, 2011, 28(7): 1622~1626

[67] D. Mori, T. Baba. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Opt. Express, 2005, 13(23): 9398~9408

[68] 张伟, 王智勇, 王文超 等. 基于光子晶体耦合波导的宽带慢光研究[J]. 光学学报, 2012, 32(2): 0213001

    Zhang Wei, Wang Zhiyong, Wang Wenchao et al.. Investigation on wideband slow light based on photonic-crystal coupled waveguides[J]. Acta Optica Sinica, 2012, 32(2): 162~166

[69] T. Han, S. Madden, S. Debbarma et al.. Improved method for hot embossing As2S3 waveguides employing a thermally stable chalcogenide coating[J]. Opt. Express, 2011, 19(25): 25447~25453

[70] Z. G. Lian, W. Pan, D. Furniss et al.. Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films[J]. Opt. Lett., 2009, 34(8): 1234~1236

[71] 张巍, 陈昱, 付晶 等. Ge-Sb-Se 硫系薄膜制备及光学特性研究[J]. 物理学报, 2012, 61(5): 056801

    Zhang Wei, Chen Yu, Fu Jing et al.. Study on fabrication and optical properties of Ge-Sb-Se thin film[J]. Acta Physica Sinica, 2012, 61(5): 056801

[72] A. Seddon, W. Pan, D. Furniss et al.. Fine embossing of chalcogenide glasses-a new fabrication route for photonic integrated circuits[J]. J. Non-Cryst. Solids, 2006, 352(23): 2515~2520

[73] K. Suzuki, T. Baba. Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides[J]. Opt. Express, 2010, 18(25): 26675~26685

[74] C. Monat, M. Spurny, C. Grillet et al.. Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides[J]. Opt. Lett., 2011, 36(15): 2818~2820

[75] C. Grillet, C. L. C. Smith, D. Freeman et al.. Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires[J]. Opt. Express, 2006, 14(3): 1070~1078

[76] C. Smith, C. Grillet, S. Tomljenovic-Hanic et al.. Characterisation of chalcogenide 2D photonic crystal waveguides and nanocavities using silica fibre nanowires[J]. Physica B: Condensed Matter, 2007, 394(2): 289~292

[77] M. W. Lee, C. Grillet, C. L. C. Smith et al.. Photosensitive post-tuning of chalcogenide photonic crystal waveguides[J]. Opt. Express, 2007, 15(3): 1277~1285

[78] D. Freeman, S. Madden, B. Luther-Davies. Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam[J]. Opt. Express, 2005, 13(8): 3079~3086

[79] M. Spurny, L. O′Faolain, D. A. P. Bulla et al.. Fabrication of low loss dispersion engineered chalcogenide photonic crystals[J]. Opt. Express, 2011, 19(3): 1991~1996

[80] E. Dulkeith, Y. A. Vlasov, X. Chen et al.. Self-phase-modulation in submicron silicon-on-insulator photonic wires[J]. Opt. Express, 2006, 14(12): 5524~5534

章亮, 张巍, 聂秋华, 戴世勋, 陈昱. 二维光子晶体波导研究进展[J]. 激光与光电子学进展, 2013, 50(3): 030008. Zhang Liang, Zhang Wei, Nie Qiuhua, Dai Shixun, Chen Yu. Research Progress of Two-Dimensional Photonic Crystal Waveguides[J]. Laser & Optoelectronics Progress, 2013, 50(3): 030008.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!