光电工程, 2018, 45 (6): 170737, 网络出版: 2018-08-04  

基于主磁场不均匀的分数域磁共振成像方法

Fractional magnetic resonance imaging based on inhomogeneous main magnetic field
作者单位
1 郑州航空工业管理学院,河南 郑州 450015
2 郑州大学信息工程学院,河南 郑州 450001
摘要
现有核磁共振设备面对主磁场不均匀多是采取贴磁片等补偿磁场不均匀等硬件方法,但这给成像带来图像伪影,图像模糊等不良影响。针对磁共振成像中磁场不均匀的问题,提出了一种主磁场不均匀下的分数域磁共振成像方法。首先选择待成像活体组织的某一层,在该层上选择若干个点,测量该层面上的磁场强度大小,在磁共振成像原理的基础上,建立成像区域磁场强度分布模型,然后建立磁场的多项式模型,按照测量的磁场中是否存在明显的二阶分量可以将该多项式模型分为二阶多项式模型和高阶多项式模型;之后,将这两个模型分别代入磁共振的自由感应衰减(FID)信号中,对于二阶模型可以用分数阶傅里叶变换工具进行求解成像物体某一层上的自旋密度函数,对于高阶模型需要通过求解代数方程的方法得到成像物体某一层面上的自旋密度函数,这样便建立了主磁场任意不均匀下的磁共振信号模型。实验结果表明,该方法达到与均匀主磁场下近似同样的效果。
Abstract
The existing NMR equipment is uneven to face the main magnetic field, mostly adopts the hardware method of magnetic field compensation, such as magnetic field compensation, but it brings bad effects such as image artifact and blurred image. In view of the problem of magnetic field inhomogeneous in magnetic resonance imaging, a fractional domain magnetic resonance imaging (fMRI) method under the main magnetic field inhomogeneous is proposed. First, select a layer of living tissue to be imaged, select several points on the layer and measure the intensity of the magnetic field on the layer. Based on the principle of magnetic resonance imaging, establish the model of the magnetic field intensity distribution in the imaging area, and then establish. The polynomial model of the magnetic field can be divided into the second-order polynomial model and the higher-order polynomial model according to whether there is a significant second-order component in the measured magnetic field. Then, the two models are respectively substituted into the free-induction decay (FID) signals of the magnetic resonance. For the second-order model, the fractional Fourier transform tool can be used to solve the spin density function on one layer of the imaged object. The order model needs to obtain the spin density function at a certain level of the imaging object by solving the algebraic equation, thus establishing the MR signal model with any non-uniform main magnetic field. Experimental results show that this method achieves the same effect as the uniform main magnetic field.
参考文献

[1] 方晟, 吴文川, 应葵, 等. 基于非均匀螺旋线数据和布雷格曼迭 代的快速磁共振成像方法[J]. 物理学报, 2013, 62(4): 048702.

    Fang S, Wu W C, Ying K, et al. A new fast magnetic resonance imaging method based on variabledensity spiral data acquisition and Bregman iterative reconstruction[J]. Acta Physica Sinica, 2013, 62(4): 048702.

[2] 申慧君. 基于复合正则化的高效压缩感知磁共振成像研究[J]. 计 算机与现代化, 2016(5): 39–45, 50.

    Shen H J. Highly efficient compressed sensing magnetic resonance imaging based on compound regularization[J]. Computer and Modernization, 2016(5): 39–45, 50.

[3] 郭新宇. 磁共振成像实时信号接收与图像重建研究[D]. 北京: 北 京化工大学, 2016.

    Guo X Y. Research of MRI Real-time Signal Receiving and Image Reconstruction[D]. Beijing: Beijing University of Chemical Technology, 2016.

[4] Somasundaram K, Gayathri S P. Brain segmentation in magnetic resonance images using fast Fourier transform[ C]//International Conference on Emerging Trends in Science, Engineering and Technology, 2012: 164–168.

[5] 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用[M]. 北京: 清华 大学出版社, 2009.

    Tao R, Deng B, Wang Y. Fractional Fourier Transform and Its Applications[M]. Beijing: Tsinghua University Press, 2009.

[6] 侯友国, 郭伟, 李新山. 基于一种新的交换矩阵的离散分数阶傅 立叶变换实现[J]. 信号处理, 2010, 26(4): 569–572.

    Hou Y G, Guo W, Li X S. Realization of discrete fractional Fourier transform based on a newly commuting matrix[J]. Signal Processing, 2010, 26(4): 569–572.

[7] Yang F X. Image encryption algorithm based on fractional Fourier transform[C]//Proceedings of the 5th International Conference on Computational and Information Sciences, 2013: 705–708.

[8] Tao R, Meng X Y, Wang Y. Image encryption with multiorders of fractional Fourier transforms[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(4): 734–738.

[9] Pan W, Qin K H, Chen Y. An adaptable-multilayer fractional fourier transform approach for image registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 400–414.

[10] Li B Z, Tao R, Xu T Z, et al. The Poisson sum formulae associated with the fractional Fourier transform[J]. Signal Processing, 2009, 89(5): 851–856.

[11] 董永强, 陶然, 周思永, 等. 基于分数阶傅里叶变换的SAR 运动 目标检测与成像[J]. 兵工学报, 1999, 20(2): 132–136.

    Dong Y Q, Tao R, Zhou S Y, et al. SAR moving target detection and imaging based on fractional Fourier transform[J]. Acta Armamentarii, 1999, 20(2): 132–136.

[12] 张静静, 江月松, 何云涛, 等. 分数域滤波的分数傅里叶变换光 学成像性能分析[J]. 光学学报, 2011, 31(11): 99–106.

    Zhang J J, Jiang Y S, He Y T, et al. Performance analysis of fractional Fourier transform optical imaging based on fractional Fourier-domain filtering[J]. Acta Optica Sinica, 2011, 31(11): 99–106.

[13] 陈勇, 赵惠昌, 陈思, 等. 基于分数阶傅里叶变换的弹载SAR 成 像算法[J]. 物理学报, 2014, 63(11): 118403.

    Chen Y, Zhao H C, Chen S, et al. Imaging algorithm for missile- borne SAR using the fractional Fourier transform[J]. Acta Physica Sinica, 2014, 63(11): 118403.

[14] Luo Z K, Wang H L, Zhou K J, et al. Combined constellation rotation with weighted FRFT for secure transmission in polarization modulation based dual-polarized satellite communications[ J]. IEEE Access, 2017, 5: 27061–27073.

张彦山, 庞栋栋, 马鹏阁, 王忠勇, 邸金红. 基于主磁场不均匀的分数域磁共振成像方法[J]. 光电工程, 2018, 45(6): 170737. Zhang Yanshan, Pang Dongdong, Ma Pengge, Wang Zhongyong, Di Jinhong. Fractional magnetic resonance imaging based on inhomogeneous main magnetic field[J]. Opto-Electronic Engineering, 2018, 45(6): 170737.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!