大气与环境光学学报, 2019, 14 (2): 103, 网络出版: 2019-04-03  

“GF-5”卫星差分吸收光谱仪热控设计及验证

Thermal Design and Validation of Spaceborne Differential Optical Absorption Spectrometer on “GF-5” Satellite
作者单位
1 上海卫星工程研究所,上海 200240
2 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
摘要
差分光谱仪是一种基于空间测量的精密光学仪器,整个寿命周期内对光机系统及探测器有较高的温度稳定性要求。为保证光路的精度,需要光学安装板 温度梯度小于2℃;为降低温度波动对信号的干扰,整轨温度波动要求小于2℃。光谱仪周边有多台载荷不同程度的遮挡,热环境复杂,给热控设计 带来较大困难。结合光谱仪热控需求及结构特点,详细分析了轨道外热流,采用对地面作为光学箱散热面、光学底板等温化设计、 以向阳面为电子学散热面、电子学箱与光学箱隔热等热控措施,实现了光谱仪高稳定性温控要求。热平衡试验与在轨数据表明, 光谱仪热控设计合理可行,能够满足在轨探测的温度指标。为后续型号光学遥感仪器高精度、高稳定的热控设计打下良好的基础。
Abstract
Differential optical absorption spectrometer is a spaceborne optical instrument with precision mechanical structure aboard GF-5 satellite, and there are high temperature stability requirements to the optical-mechanical system and the detector throughout its life cycle. In order to ensure the accuracy of the optical path, the optical installation plate temperature gradient needs to be less than 2℃. In order to reduce the interference of temperature fluctuation to the signal, the temperature fluctuation within whole track is required less than 2℃. Locating with several payloads around, the thermal environment is complex, which makes the design of thermal control difficult. In combination with the thermal control requirements and structural characteristics of the spectrometer, the thermal flow outside on the orbit is analyzed in detail. The side toward earth is used as a heat dissipation surface. The isothermal design is applied for the optical bottom plate. The sunward surface of the instrument is taken as an electronic heat dissipation surface. Some measures are performed to keep the heat insulation between electronic box and optical box. The high stability of temperature control for the spectrometer is realized. The thermal balance test and on-orbit data show that the thermal control design of the spectrometer is reasonable and feasible, and can meet the temperature index demand for on-orbit detection. It builds a good foundation for the high-precision and high-stability thermal control design of the follow-up optical remote sensing instruments.
参考文献

[1] 孙允珠,蒋光伟,李云端, 等. 高光谱观测卫星及应用前景[J]. 上海航天, 2017, 34(3): 1-13.

    Sun Yunzhu, Jiang Guangwei, Li Yunduan,et al. Hyper-Spectral Observation Satellite and it’s Application Prospects[J]. Aerospace Shanghai, 2017, 34(3): 1-13 (in Chinese).

[2] Platt U, Pemer D, Simultaneous measurements of atmospheric CH2O,O3 and NO2 by differential optical absorption[J].Journal of Geophysical Research Atmospheres, 1979, 84: 6329-6335.

[3] Platt U.Differential optical absorption spectroscopy (DOAS)[M], Edited by M W. Sigrist, Chemical Analysis Series,1994, 127: 27-84.

[4] 周 斌,刘文清, 齐 峰等. 差分光学吸收光谱法测量大气污染气体的研究[J]. 环境科学研究, 2001, 14(5): 23-26.

    Zhou Bin, Liu Wen qing, Qi Feng,et al. Study on differential optical absorption spectrometry for atmospheric pollutants monitoring[J]. Research of Environmental Sciences, 2001, 14(5): 23-26(in Chinese).

[5] 陈立恒,吴清文,刘伟奇,等. 空间摄像机热控系统设计[J]. 光学 精密工程, 2012, 20(3): 556-562.

    Chen Liheng, Wu Qingwen, Liu Weiqi,et al. Thermal design for space cameras[J]. Optics And Precision Engineering, 2012, 20(3): 556-562(in Chinese).

[6] 陈恩涛,卢 锷. 空间遥感器CCD组件热设计[J]. 光学 精密工程, 2000, 8(6): 522-525.

    Chen Entao, Lu E, Theral engineering design of CCD component of space remote-sensor[J].Optics And Precision Engineering. 2000, 8(6): 522-525(in Chinese).

[7] Glen W. Batts. Thermal environment in space for engineering applications[R]. AIAA-94-0593, 1994.

[8] Bhanderi D, Bak Thomas. Modeling earth albedo for satellite in earth orbit[C].AIAA Guidance, Navigation, and Control Conference. San Francisco, California, 2005:1-12.

[9] 闵桂荣. 卫星热控制技术[M]. 北京:宇航出版社,1991.

    Min Guirong.Satellite Thermal control Technology[M]. Beijing: Astronavigation Press, 1991(in Chinese).

桂利佳, 曾议, 司福祺. “GF-5”卫星差分吸收光谱仪热控设计及验证[J]. 大气与环境光学学报, 2019, 14(2): 103. GUI Lijia, ZENG Yi, SI Fuqi. Thermal Design and Validation of Spaceborne Differential Optical Absorption Spectrometer on “GF-5” Satellite[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(2): 103.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!