中国激光, 2020, 47 (2): 0207006, 网络出版: 2020-02-21   

光学成像技术在光动力剂量监测中的应用进展 下载: 1596次特邀综述

Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry
作者单位
福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
引用该论文

李文博, 沈毅, 李步洪. 光学成像技术在光动力剂量监测中的应用进展[J]. 中国激光, 2020, 47(2): 0207006.

Li Wenbo, Shen Yi, Li Buhong. Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry[J]. Chinese Journal of Lasers, 2020, 47(2): 0207006.

参考文献

[1] Yun S H. Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 2017, 1(1): 0008.

[2] Fukumura D, Jain R K. Photodynamic therapy for cancer[J]. Nature Reviews Cancer, 2003, 3(5): 380-387.

[3] 李步洪, 谢树森, Wilson Brian C. 光动力学疗法剂量学的研究进展[J]. 生物化学与生物物理进展, 2009, 36(6): 676-683.

    Li B H, Xie S S, Wilson B C. Advances in photodynamic therapy dosimetry[J]. Progress in Biochemistry and Biophysics, 2009, 36(6): 676-683.

[4] Celli J P, Spring B Q, Rizvi I, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization[J]. Chemical Reviews, 2010, 110(5): 2795-2838.

[5] Weishaupt K R, Gomer C J, Dougherty T J. Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor[J]. Cancer Research, 1976, 36: 2326-2329.

[6] Yamamoto J, Yamamoto S, Hirano T, et al. Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma[J]. Clinical Cancer Research, 2006, 12(23): 7132-7139.

[7] Krasnovsky A A Jr. Luminescence and photochemical studies of singlet oxygen photonics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 196(2/3): 210-218.

[8] Allison R R, Sibata C H. Photofrin photodynamic therapy: 2.0 mg/kg or not 2.0 mg/kg that is the question[J]. Photodiagnosis and Photodynamic Therapy, 2008, 5(2): 112-119.

[9] 李黎波, 李文敏, 项蕾红, 等. 光动力疗法在中国的应用与临床研究[J]. 中国激光医学杂志, 2012, 21(5): 278-307.

    Li L B, Li W M, Xiang L H, et al. Photodynamic therapy: clinical research and application in China[J]. Chinese Journal of Laser Medicine & Surgery, 2012, 21(5): 278-307.

[10] Star W M. Lightdosimetry in vivo[J]. Physics in Medicine and Biology, 1997, 42(5): 763-787.

[11] Dougherty T J. Photosensitizers: therapy and detection of malignant tumors[J]. Photochemistry and Photobiology, 1987, 45(6): 879-889.

[12] Fuchs J, Thiele J. The role of oxygen in cutaneous photodynamic therapy[J]. Free Radical Biology and Medicine, 1998, 24(5): 835-847.

[13] 陈德福, 王颖, 顾瑛. 血管靶向光动力疗法治疗鲜红斑痣的剂量监测技术研究进展[J]. 中国激光医学杂志, 2016, 25(2): 82-96.

    Chen D F, Wang Y, Gu Y. Progress in dosimetric monitoring techniques involved in vascular targeted photodynamic therapy for port wine stains[J]. Chinese Journal of Laser Medicine & Surgery, 2016, 25(2): 82-96.

[14] Li B, Lin L, Lin H. Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy[J]. Journal of Biophotonics, 2016, 9(11/12): 1314-1325.

[15] Wilson B C, Patterson M S, Li B H, et al. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy[J]. Journal of Innovative Optical Health Sciences, 2015, 8(1): 1540006.

[16] Mallidi S, Spring B Q, Chang S, et al. Optical imaging, photodynamic therapy and optically triggered combination treatments[J]. The Cancer Journal, 2015, 21(3): 194-205.

[17] Robertson C A, Evans D H, Abrahamse H. Photodynamic therapy (PDT):a short review on cellular mechanisms and cancer research applications for PDT[J]. Journal of Photochemistry and Photobiology B: Biology, 2009, 96(1): 1-8.

[18] 蓝善优, 张达, 刘小龙, 等. 肿瘤微环境响应的智能纳米载体在肿瘤光动力治疗中的应用[J]. 中国激光, 2018, 45(2): 0207008.

    Lan S Y, Zhang D, Liu X L, et al. Tumor-microenvironment activable smart nanocarrier system for photodynamic therapy of cancers[J]. Chinese Journal of Lasers, 2018, 45(2): 0207008.

[19] Fingar V H. Vascular effects of photodynamic therapy[J]. Journal of Clinical Laser Medicine & Surgery, 1996, 14(5): 323-328.

[20] Krammer B. Vascular effects of photodynamic therapy[J]. Anticancer Research, 2001, 21(6B): 4271-4277.

[21] Chen B, Pogue B W, Luna J M. Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications[J]. Clinical Cancer Research, 2006, 12(3): 917-923.

[22] Shapey J, Xie Y J, Nabavi E, et al. Intraoperative multispectral and hyperspectral label-free imaging: a systematic review of in vivo clinical studies[J]. Journal of Biophotonics, 2019, 12(9): 201800455.

[23] Zhou L. El-Deiry W S. Multispectral fluorescence imaging[J]. Journal of Nuclear Medicine, 2009, 50(10): 1563-1566.

[24] Hillebrands J L, van Dam G M, et al. Multispectral near-infrared fluorescence molecular imaging of matrix metalloproteinases in a human carotid plaque using a matrix-degrading metalloproteinase-sensitive activatable fluorescent probe[J]. Circulation, 2009, 119(20): 534-536.

[25] Valdés P A, Leblond F, Jacobs V L, et al. Quantitative, spectrally-resolved intraoperative fluorescence imaging[J]. Scientific Reports, 2012, 2: 798.

[26] Valdés P A, Leblond F, Kim A, et al. A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery[J]. Optics Letters, 2012, 37(11): 1817-1819.

[27] Valdes P A, Jacobs V L, Wilson B C, et al. System and methods for wide-field quantitative fluorescence imaging during neurosurgery[J]. Optics Letters, 2013, 38(15): 2786-2788.

[28] Jermyn M, Gosselin Y, Valdes P A, et al. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery[J]. Biomedical Optics Express, 2015, 6(12): 5063-5074.

[29] Sibai M, Veilleux I, Elliott J T, et al. Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection[J]. Biomedical Optics Express, 2015, 6(12): 4923-4933.

[30] Xie Y J, Thom M, Ebner M, et al. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection[J]. Journal of Biomedical Optics, 2017, 22(11): 116006.

[31] Sunar U, Rohrbach D J, Morgan J, et al. Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging[J]. Biomedical Optics Express, 2013, 4(4): 531-537.

[32] Hirao A, Sato S, Saitoh D, et al. In vivo photoacoustic monitoring of photosensitizer distribution in burned skin for antibacterial photodynamic therapy[J]. Photochemistry and Photobiology, 2010, 86(2): 426-430.

[33] Ho C J H, Balasundaram G, Driessen W, et al. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging[J]. Scientific Reports, 2015, 4: 5342.

[34] Hu W B, Ma H H, Hou B, et al. Engineering lysosome-targeting BODIPY nanoparticles for photoacoustic imaging and photodynamic therapy under near-infrared light[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12039-12047.

[35] Yan X F, Hu H, Lin J, et al. Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies[J]. Nanoscale, 2015, 7(6): 2520-2526.

[36] Krzykawska-Serda M, Dabrowski J M, Arnaut L G, et al. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy[J]. Free Radical Biology and Medicine, 2014, 73: 239-251.

[37] Liu Y Y, Liu Y, Bu W B, et al. Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors[J]. Angewandte Chemie International Edition, 2015, 54(28): 8105-8109.

[38] Cao F, Qiu Z H, Li H H, et al. Photoacoustic imaging in oxygen detection[J]. Applied Sciences, 2017, 7(12): 1262.

[39] Moore C, Jokerst J V. Strategies for image-guided therapy, surgery, and drug delivery using photoacoustic imaging[J]. Theranostics, 2019, 9(6): 1550-1571.

[40] Mallidi S, Watanabe K, Timerman D, et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging[J]. Theranostics, 2015, 5(3): 289-301.

[41] Shao P, Chapman D W, Moore R B, et al. Monitoring photodynamic therapy with photoacoustic microscopy[J]. Journal of Biomedical Optics, 2015, 20(10): 106012.

[42] Neuschmelting V, Kim K, Malekzadeh-Najafabadi J, et al. WST11 vascular targeted photodynamic therapy effect monitoring by multispectral optoacoustic tomography (MSOT) in mice[J]. Theranostics, 2018, 8(3): 723-734.

[43] Hirakawa Y, Mizukami K, Yoshihara T, et al. Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia[J]. Kidney International, 2018, 93(6): 1483-1489.

[44] Sakadžic S, Roussakis E, Yaseen M A, et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue[J]. Nature Methods, 2010, 7(9): 755-759.

[45] Wang Y, Hu S, Maslov K, et al. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure[J]. Optics Letters, 2011, 36(7): 1029-1031.

[46] Shao Q, Ashkenazi S. Photoacoustic lifetime imaging fordirect in vivo tissue oxygen monitoring[J]. Journal of Biomedical Optics, 2015, 20(3): 036004.

[47] Chen S Y, Shu X, Nesper P L, et al. Retinal oximetry in humans using visible-light optical coherence tomography[J]. Biomedical Optics Express, 2017, 8(3): 1415-1429.

[48] Yi J, Liu W Z, Chen S Y, et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light: Science & Applications, 2015, 4(9): e334.

[49] Chen S Y, Liu Q, Shu X, et al. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography[J]. Biomedical Optics Express, 2016, 7(9): 3377-3389.

[50] 蒋昕鹏, 戴志飞. 光动力活性氧的研究进展[J]. 科学通报, 2018, 63(18): 1783-1802.

    Jiang X P, Dai Z F. Reactive oxygen species in photodynamic therapy[J]. Chinese Science Bulletin, 2018, 63(18): 1783-1802.

[51] Scholz M, Biehl A L, Dědic R, et al. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach[J]. Photochemical & Photobiological Sciences, 2015, 14(4): 700-713.

[52] Niedre M J, Yu C S, Patterson M S, et al. Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid[J]. British Journal of Cancer, 2005, 92(2): 298-304.

[53] Looft A, Pfitzner M, Preuß A, et al. In vivo singlet molecular oxygen measurements: sensitive to changes in oxygen saturation during PDT[J]. Photodiagnosis and Photodynamic Therapy, 2018, 23: 325-330.

[54] Kim I W, Park J M, Roh Y J, et al. Direct measurement of singlet oxygen by using a photomultiplier tube-based detection system[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 159: 14-23.

[55] Gemmell N R. McCarthy A, Liu B C, et al. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector[J]. Optics Express, 2013, 21(4): 5005-5013.

[56] Boso G, Ke D M, Korzh B, et al. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector[J]. Biomedical Optics Express, 2016, 7(1): 211-224.

[57] Hu B L, Zeng N, Liu Z Y, et al. Two-dimensional singlet oxygen imaging with its near-infrared luminescence during photosensitization[J]. Journal of Biomedical Optics, 2011, 16(1): 016003.

[58] Lee S, Isabelle M E. Gabally-Kinney K L, et al. Dual-channel imaging system for singlet oxygen and photosensitizer for PDT[J]. Biomedical Optics Express, 2011, 2(5): 1233-1242.

[59] Lin L S, Li Y R, Zhang J D, et al. Vessel constriction correlated with local singlet oxygen generation during vascular targeted photodynamic therapy[J]. Proceedings of SPIE, 2014, 9268: 92680T.

[60] Briers D J. Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging[J]. Physiological Measurement, 2001, 22(4): R35-R66.

[61] 林黎升, 陈德福, 顾瑛, 等. 评估光动力血管损伤的光学监测技术[J]. 激光生物学报, 2016, 25(2): 97-106.

    Lin L S, Chen D F, Gu Y, et al. Optical monitoring techniques for assessing vascular damage of vascular targeted photodynamic therapy[J]. Acta Laser Biology Sinica, 2016, 25(2): 97-106.

[62] Chen D F, Ren J, Wang Y, et al. Intraoperative monitoring of blood perfusion in port wine stains by laser Doppler imaging during vascular targeted photodynamic therapy: a preliminary study[J]. Photodiagnosis and Photodynamic Therapy, 2016, 14: 142-151.

[63] Yu G, Durduran T, Zhou C, et al. Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy[J]. Clinical Cancer Research, 2005, 11(9): 3543-3552.

[64] Dunn A K. Laser speckle contrast imaging of cerebral blood flow[J]. Annals of Biomedical Engineering, 2012, 40(2): 367-377.

[65] Vaz P G, Humeau-Heurtier A, Figueiras E, et al. Laser speckle imaging to monitor microvascular blood flow: a review[J]. IEEE Reviews in Biomedical Engineering, 2016, 9: 106-120.

[66] 李晨曦, 陈文亮, 蒋景英, 等. 激光散斑衬比血流成像技术研究进展[J]. 中国激光, 2018, 45(2): 0207006.

    Li C X, Chen W L, Jiang J Y, et al. Laser speckle contrast imaging on in vivo blood flow: a review[J]. Chinese Journal of Lasers, 2018, 45(2): 0207006.

[67] Kruijt B, de Bruijn H S, et al. Laser speckle imaging of dynamic changes in flow during photodynamic therapy[J]. Lasers in Medical Science, 2006, 21(4): 208-212.

[68] Moy W J, Patel S J, Lertsakdadet B S, et al. Preclinical in vivo evaluation of Npe6-mediated photodynamic therapy on normal vasculature[J]. Lasers in Surgery and Medicine, 2012, 44(2): 158-162.

[69] Ren J, Li P C, Zhao H Y, et al. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study[J]. Lasers in Medical Science, 2014, 29(2): 781-788.

[70] Abdurashitov A, Bragina O, Sindeeva O, et al. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues[J]. Journal of Biomedical Optics, 2017, 22(9): 091514.

[71] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8): 627-638.

[72] 唐嘉铭, 黄正. 光声成像在光动力疗法研究中的应用[J]. 激光生物学报, 2016, 25(3): 204-208.

    Tang J M, Huang Z. Application of photoacoustic imaging techniques in research of photodynamic therapy[J]. Acta Laser Biology Sinica, 2016, 25(3): 204-208.

[73] Gao X X, Tao C, Wang X D, et al. Quantitative imaging of microvasculature in deep tissue with a spectrum-based photo-acoustic microscopy[J]. Optics Letters, 2015, 40(6): 970-973.

[74] Liu L B, Tao C, Liu X J, et al. Photoacoustic tomography from weak and noisy signals by using a pulse decomposition algorithm in the time-domain[J]. Optics Express, 2015, 23(21): 26969-26977.

[75] Xiang L Z, Xing D, Gu H M, et al. Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor[J]. Journal of Biomedical Optics, 2007, 12(1): 014001.

[76] 李培, 李鹏. 多样本光学相干血流运动造影技术及应用[J]. 中国激光, 2018, 45(3): 0307001.

    Li P, Li P. Mass simple optical coherence tomography angiography technology and application[J]. Chinese Journal of Lasers, 2018, 45(3): 0307001.

[77] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[J]. Biomedical Optics Express, 2017, 8(3): 1638-1664.

[78] Leitgeb R A, Werkmeister R M, Blatter C, et al. Doppler optical coherence tomography[J]. Progress in Retinal and Eye Research, 2014, 41(10): 26-43.

[79] de Carlo T E, Romano A, Waheed N K, et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 2015, 1(1): 5.

[80] Chen C L, Wang R K. Optical coherence tomography based angiography[J]. Biomedical Optics Express, 2017, 8(2): 1056-1082.

[81] Latrive A. Teixeira L R C, Gomes A S L, et al. Characterization of skin Port-Wine Stain and Hemangioma vascular lesions using Doppler OCT[J]. Skin Research and Technology, 2016, 22(2): 223-229.

[82] Pellegrini M, Corvi F. Say E A T, et al. Optical coherence tomography angiography features of choroidal neovascularization associated with choroidal nevus[J]. Retina, 2018, 38(7): 1338-1346.

[83] de Jong JH, BraafB, AmarakoonS, et al. Treatment effects in retinal angiomatous proliferation imaged with OCT angiography[C]//Annual Meeting of the Association for Research in Vision and Ophthalmology(ARVO), May 01, 2016, Seattle, WA, USA. Maryland: Assoc Res Vis & Ophthalmol, 2019, 241( 3): 143- 153.

[84] Matveev L A, Zaitsev V Y, Gelikonov G V, et al. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans[J]. Optics Letters, 2015, 40(7): 1472-1475.

[85] Sirotkina M A, Matveev L A, Shirmanova M V, et al. Photodynamic therapy monitoring with optical coherence angiography[J]. Scientific Reports, 2017, 7: 41506.

[86] Sirotkina M A, Gubarkova E V, Matveev L A, et al. Optical coherence angiography monitoring of tumor early response to PDT in experimental and clinical studies[J]. Proceedings of SPIE, 2019, 11079: 110790K.

[87] Harper D J, Augustin M, Lichtenegger A, et al. White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina[J]. Biomedical Optics Express, 2018, 9(5): 2115-2129.

[88] Fujimoto J G. Optical coherence tomography for ultrahigh resolution in vivo imaging[J]. Nature Biotechnology, 2003, 21(11): 1361-1367.

[89] Liu G J, Chen A Z. Advances in Doppler OCT[J]. Chinese Optics Letters, 2013, 11(1): 011702.

李文博, 沈毅, 李步洪. 光学成像技术在光动力剂量监测中的应用进展[J]. 中国激光, 2020, 47(2): 0207006. Li Wenbo, Shen Yi, Li Buhong. Advances in Optical Imaging for Monitoring Photodynamic Therapy Dosimetry[J]. Chinese Journal of Lasers, 2020, 47(2): 0207006.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!