激光与光电子学进展, 2017, 54 (4): 040005, 网络出版: 2017-04-19   

基于飞秒激光时空聚焦技术的三维微纳加工 下载: 985次

Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser
井晨睿 1,2,*王朝晖 2,3程亚 2
作者单位
1 洛阳师范学院物理与电子信息学院, 河南 洛阳 471000
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
3 中国航空工业集团公司洛阳电光设备研究所, 河南 洛阳 471000
摘要
介绍飞秒激光时空聚焦技术的基本原理,回顾了该技术在改善飞秒激光加工的分辨率、抑制加工过程中的非线性效应以及提高材料加工质量等方面的应用。重点讨论了脉冲前沿倾斜(PFT)、光强平面倾斜等时空聚焦飞秒激光脉冲的独特光场特性及其对材料加工产生的影响。介绍了时空聚焦技术在强场物理领域中的应用,并对该技术的适用范围进行了讨论。最后对该技术的特点和应用进行总结,并指明了未来的研究方向。
Abstract
The fundamental principle of spatiotemporal focusing technique of femtosecond laser is introduced in this paper, and applications of this technique on improving the resolution of femtosecond laser fabrication, suppressing the nonlinear effect of the fabricating process, and improving the materials fabrication quality are reviewed. Discussion is emphasized on the unique optical field characteristics of spatiotemporally focused femtosecond laser pulses including pulse front tilt (PFT) and intensity plane tilt, and their influence on material processing. Moreover, the applications of spatiotemporal focusing technique on high field physics and its scope of applications are introduced. Lastly, we summarize the principles and applications of spatiotemporal focusing technique, and suggest several directions for the future research.
参考文献

[1] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature photonics, 2008, 2(4): 219-225.

[2] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

[3] Osellame R, Hoekstra H J W M, Cerullo G, et al. Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips[J]. Laser & Photonics Reviews, 2011, 5(3): 442-463.

[4] Beresna M, Gecevicˇius M, Kazansky P G. Ultrafast laser direct writing and nanostructuring in transparent materials[J]. Advances in Optics and Photonics, 2014, 6(3): 293-339.

[5] Ams M, Marshall G D, Dekker P, et al. Ultrafast laser written active devices[J]. Laser & Photonics Reviews, 2009, 3(6): 535-544.

[6] Chen F, Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond‐laser micromachining[J]. Laser & Photonics Reviews, 2014, 8(2): 251-275.

[7] 公 民, 戴 晔, 宋 娟, 等. 单光束飞秒激光诱导的电子态密度分布对双周期纳米光栅的影响[J]. 光学学报, 2016, 36(5): 0514001.

    Gong Min, Dai Ye, Song Juan, et al. Influence of electron density distribution induced by single beam femtosecond laser doubly-periodic nanogratings[J]. Acta Optica Sinica, 2016, 36(5): 0514001.

[8] 戴 晔, 邱建荣. 单光束飞秒激光诱导石英玻璃内部纳米光栅的研究进展[J]. 激光与光电子学进展, 2013, 50(12): 120002.

    Dai Ye, Qiu Jianrong. Research progress of single beam femtosecond laser direct writing self-organized nanogratings in fused silica[J]. Laser & Optoelectronic Progress, 2013, 50(12): 120002.

[9] 贾曰辰, 陈 峰. 飞秒激光直写介电晶体光波导的研究进展[J]. 激光与光电子学进展, 2016, 53(1): 010001.

    Jia Yuechen, Chen Feng. Advances in dielectric crystal waveguides produced by direct femtosecond laser writing[J]. Laser & Optoelectronic Progress, 2016, 53(1): 010001.

[10] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

[11] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[12] Liao Y, Cheng Y, Liu C, et al. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration[J]. Lab on a Chip, 2013, 13(8): 1626-1631.

[13] Juodkazis S, Nishimura K, Tanaka S, et al. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures[J]. Physical Review Letters, 2006, 96(16): 166101.

[14] Osellame R, Taccheo S, Marangoni M, et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams[J]. Journal of the Optical Society of America B, 2003, 20(7): 1559-1567.

[15] Cheng Y, Sugioka K, Midorikawa K, et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 2003, 28(1): 55-57.

[16] Sugioka K, Cheng Y, Midorikawa K, et al. Femtosecond laser microprocessing with three-dimensionally isotropic spatial resolution using crossed-beam irradiation[J]. Optics Letters, 2006, 31(2): 208-210.

[17] He F, Xu H, Cheng Y, et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses[J]. Optics Letters, 2010, 35(7): 1106-1108.

[18] He F, Cheng Y, Lin J, et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining[J]. New Journal of Physics, 2011, 13(8): 083014.

[19] Vitek D N, Adams D E, Johnson A, et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials[J]. Optics Express, 2010, 18(17): 18086-18094.

[20] Block E, Greco M, Vitek D, et al. Simultaneous spatial and temporal focusing for tissue ablation[J]. Biomedical Optics Express, 2013, 4(6): 831-841.

[21] Kammel R, Ackermann R, Thomas J, et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing[J]. Light: Science & Applications, 2014, 3(5): e169.

[22] Tangeysh B, Moore Tibbetts K, Odhner J H, et al. Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]-[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18719-18727.

[23] Vitek D N, Block E, Bellouard Y, et al. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials[J]. Optics Express, 2010, 18(24): 24673-24678.

[24] He F, Zeng B, Chu W, et al. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam[J]. Optics Express, 2014, 22(8): 9734-9748.

[25] Li G, Ni J, Xie H, et al. Second harmonic generation in centrosymmetric gas with spatiotemporally focused intense femtosecond laser pulses[J]. Optics Letters, 2014, 39(4): 961-964.

[26] Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819.

[27] Zeng B, Wang T J, Hosseini S, et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 2012, 29(12): 3226-3230.

[28] He F, Wang Z, Zeng B, et al. Extraordinary characteristics of spatiotemporally focused laser pulses and their roles in precision materials processing[C]. Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America, 2015: 26B2_3.

[29] Durfee C G, Greco M, Block E, et al. Intuitive analysis of space-time focusing with double-ABCD calculation[J]. Optics Express, 2012, 20(13): 14244-14259.

[30] Wang Z, He F, Ni J, et al. Interferometric characterization of pulse front tilt of spatiotemporally focused femtosecond laser pulses[J]. Optics Express, 2014, 22(21): 26328-26337.

[31] Wang Z, Liao Y, Wang P, et al. Formation of in-volume nanogratings in glass induced by spatiotemporally focused femtosecond laser pulses[J]. Advanced Optical Technologies, 2016, 5(1): 81-85.

[32] Kazansky P G, Yang W, Bricchi E, et al. "Quill" writing with ultrashort light pulses in transparent materials[J]. Applied Physics Letters, 2007, 90(15): 151120.

[33] Sun Q, Jiang H, Liu Y, et al. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica[J]. Optics Letters, 2005, 30(3): 320-322.

[34] Wang Z, Zeng B, Li G, et al. Time-resolved shadowgraphs of transient plasma induced by spatiotemporally focused femtosecond laser pulses in fused silica glass[J]. Optics Letters, 2015, 40(24): 5726-5729.

[35] Chin S L. Femtosecond laser filamentation[M]. New York: Springer, 2010.

[36] Cheng Y, Xie H, Wang Z, et al. Onset of nonlinear self-focusing of femtosecond laser pulses in air: conventional vs spatiotemporal focusing[J]. Physical Review A, 2015, 92(2): 023854.

井晨睿, 王朝晖, 程亚. 基于飞秒激光时空聚焦技术的三维微纳加工[J]. 激光与光电子学进展, 2017, 54(4): 040005. Jing Chenrui, Wang Zhaohui, Cheng Ya. Three-Dimensional Micro- and Nano-Machining Based on Spatiotemporal Focusing Technique of Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040005.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!