中国光学, 2019, 12 (1): 138, 网络出版: 2019-03-06   

3种主动合成孔径成像技术极限探测能力的分析与比较

Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques
作者单位
1 中国科学院 长春光学精密机械与物理研究所 光电探测部, 吉林 长春130033
2 中国科学院大学, 北京100049
摘要
为了深入研究可行的中高轨成像技术, 本文从探测能力角度(用最低发射激光功率表示)深入分析和比较3种主动干涉合成孔径成像技术--傅立叶望远镜(又称为相干场成像或条纹场扫描成像)、成像相关术(又称为强度相关成像)和剪切光束成像。本文利用光电倍增管的信噪比模型和激光作用距离方程, 较为细致地分析每种技术在满足单次信噪比(SNR=5)条件下的极限探测能力。通过仿真分析得出:傅立叶望远镜、成像相关术和剪切光束成像所需的最低单光束单脉冲能量分别为114 J、073 MJ和31 MJ。最终得出傅立叶望远镜是上述3种主动成像技术中在目前技术水平下最适合中高轨目标(约36 000 km)高分辨成像的可用技术的结论。
Abstract
In order to deeply study the feasibility GEO imaging techniques, this paper deeply analyzes and compares three techniques for active interferometric synthetic aperture imaging by means of sensitivity. These techniques are Fourier telescopy, imaging correlography and sheared-beam imaging. Using a SNR(signal to noise ratio) model for photomultiplier tubes and laser range equations, this paper gives a detailed analysis of the limit detection capability of each technique when SNR is 5. Through simulation, it was found that the lowest single pulse energies for Fourier telescopy, imaging correlography and sheared-beam imaging were 114 J, 073 MJ and 31 MJ, respectively. The conclusion is that Fourier telescopy is the best among these three imaging techniques, making it most suitable for GEO imaging in the present era.
参考文献

[1] LOUIS S. Estimator and signal-to-noise ratio for an integrative synthetic aperture imaging technique[J]. Applied Optics,1991,30(2):206-213.

[2] DAVID G V,JOHN F B,LAURA U,et al.. Ground-to-space laser imaging: review 2001[C]. SPIE,2002,4489:35-47.

[3] GREENAWAY A H. The signal-to-noise ratio in long-baseline stellar interferometry[J]. Optica Acta,1979,26(9):1147-1171.

[4] JAMES J B,JAMES B B. Passive imaging through the turbulent atmosphere:fundamental limits on the spatial frequency resolution of a rotational shearing interferometer[J]. J. Opt. Soc. Am.,1978,68(1):67-77.

[5] 罗秀娟, 张羽, 孙鑫, 等.大气环境中傅立叶望远镜系统能量设计[J].光学学报, 2013, 33(8): 0801004-1-8.

    LUO X J,ZHANG Y,SUN X,et al.. Energy design of Fourier telescope system in the atmospheric environment[J]. Acta Optica Sinica,2013, 33(8): 0801004-1-8.(in Chinese)

[6] GAMIZ V,HOLMES R B,CZYZAK S R,et al.. GLINT:program overview and potential science objectives[C]. SPIE,2000,4091:304-315.

[7] 于树海, 王建立, 董磊, 等.基于最小二乘法拟合估计傅立叶望远镜的缺失分量[J].光学 精密工程,2015,23(1):282-287.

    YU SH H,WANG J L,DONG L,et al.. Estimation of missing component of Fourier telescopy based on least square fitting[J]. Opt. Precision Eng.,2015,23(1):282-287.(in Chinese)

[8] 于树海, 王建立, 董磊, 等.基于非均匀周期采样的傅立叶望远镜时域信号采集方法[J].中国光学,2013,6(3):395-401.

    YU SH H,WANG J L,DONG L,et al.. Time region signal collecting method of Fourier telescopy based on non-uniform periodically sampling[J]. Chinese Optics,2013,6(3):395-401.(in Chinese)

[9] 周志盛,相里斌,张文喜,等.基于迭代的傅立叶望远镜图像重构方法[J].光学学报, 2014,34(5):0511005-1-7.

    ZHOU ZH SH,XIANG L B,ZHANG W X,et al.. Image reconstruction method of Fourier telescope based on iteration[J]. Acta Optica Sinica,2014,34(5):0511005-1-7.(in Chinese)

[10] FIENUP J R,IDELL P S. Imaging correlography with sparse arrays of detectors[J]. Opt. Eng.,1988,27:778-784.

[11] 梁振宇, 樊祥, 程正东, 等.任意阶运动目标强度关联成像[J].红外与激光工程,2017,46(8):0824002-1-8.

    LIANG ZH Y,FAN X,CHENG ZH D,et al.. N-th order intensity correlated imaging for moving target[J]. Infrared and Laser Engineering,2017,46(8):0824002-1-8.(in Chinese)

[12] 梅笑冬,龚文林,严毅,等.可预置激光三维强度关联成像雷达实验研究[J].中国激光,2016,43(7):0710003-1-9.

    MEI X D,GONG W L,YAN Y,et al.. Experimental research on prebuilt three-dimensional imaging ladar[J]. Chinese Journal of Lasers,2016,43(7):0710003-1-9.(in Chinese)

[13] HUTCHIN R A. Sheared coherent interferometric photography[C]. SPIE,1993,2029:161-168.

[14] 陈明徕,罗秀娟,张羽,等.基于全相位谱分析的剪切光束成像目标重构[J].物理学报,2017,66(2):024203-1-6.

    CHEN M L,LUO X J,ZHANG Y,et al.. Sheared-beam imaging target reconstruction based on all-phase spectrum analysis[J]. Acta Physica Sinica,2017,66(2):024203-1-6.(in Chinese)

[15] HAMAMATSU PHOTONICS K K. Photomultiplier Tubes:Basics and Applications(3 edition)[M]. Tokyo:Hamamatsu Photonics Press,2007:73-77.

[16] 徐正平,许永森,姚园,等.凝视型激光主动成像系统性能验证[J].光学 精密工程,2017,25(6):1441-1448.

    XU ZH P,XU Y S,YAO Y,et al.. Performance verification of staring laser active imaging system[J]. Opt. Precision Eng.,2017,25(6):1441-1448.(in Chinese)

[17] 李明,薛莉,黄晨,等.基于有效回波概率估计空间碎片激光测距系统作用距离[J].光学 精密工程,2016,24(2):260-267.

    LI M,XUE L,HUANG CH,et al.. Estimation of detection range for space debris laser ranging system based on efficient echo probability[J]. Opt. Precision Eng.,2016,24(2):260-267.(in Chinese)

[18] STEVEN M S,RICHARD K,PAUL F,et al.. Sheared-beam coherent image reconstruction[C]. SPIE,1996,2847:150-158.

[19] 饶瑞中.现代大气光学[M].北京:科学出版社,2012:330-333.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing:Science Press,2012:330-333.(in Chinese)

[20] 胡益华,曹必松,魏斌,等.9.7 GHz高频窄带高温超导滤波器设计[J].低温物理学报,2005,27(4):371-374.

    HU Y H,CAO B S,WEI B,et al.. A high-frequency and narrow-band HTS filter at 9.7 GHz[J]. Chinese Journal of Low Temperature Physics,2005,27(4):371-374.(in Chinese)

[21] 杨丽萍, 万飞, 杨思川, 等.四硼酸锂在高频窄带滤波器上的应用探讨[J].压电与声光,2014,36(1):27-31.

    YANG L P,WAN F,YANG S CH,et al.. Discussion on application of LBO for high-frequency and Narrow-band filters[J]. Piezoelectrics & Acoustooptics,2014,36(1):27-31.(in Chinese)

[22] 邓克强, 邓其贤, 何玉民.掠面体波高频极窄带滤波器[J].火控雷达技术, 1986(3):40-43.

    DENG K Q,DENG Q X,HE Y M. High frequency extremely narrow band filter based on sweeping surface body wave[J]. Fire Control Radar Technology,1986(3):40-43.(in Chinese)

[23] RODDIER F. Interferometric imaging in optical astronomy[J]. Physics Reports,1988,170(2): 97-166.

[24] THOMPSON A R,JAMES M M,GEORGE W S J. Interferometry and Synthesis in Radio Astronomy[M]. Switzerland: Springer,2016,835.

[25] STEVEN M S,RICHARD K,PAUL F,et al.. Sheared-beam coherent image reconstruction[C]. SPIE,1996,2847:150-158.

董磊, 卢振武, 刘欣悦. 3种主动合成孔径成像技术极限探测能力的分析与比较[J]. 中国光学, 2019, 12(1): 138. DONG Lei, LU Zhen-wu, LIU Xin-yue. Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques[J]. Chinese Optics, 2019, 12(1): 138.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!