中国激光, 2016, 43 (9): 0901004, 网络出版: 2018-05-25   

亚波长抗反射光栅的设计

Design of Subwavelength Anti-Reflective Grating
作者单位
长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
摘要
设计了一种具有波长和偏振模式选择特性的GaAs材料的亚波长抗反射光栅,工作波长为976 nm。采用等效介质理论与薄膜理论对光栅进行初步设计,基于严格耦合波法依次对光栅占空比、脊高和周期进行优化确定,同时分析了各个参数对光栅透射率的影响。所设计的抗反射光栅分别具有99.99%(横电模)和99.86%(横磁模)的高透射率,并且在976 nm± 30 nm的范围内保持99%以上的高透射率,满足器件应用要求。最后研究了工艺误差导致的光栅非矩形形貌对光栅透射率以及偏振优势模式的影响。
Abstract
A subwavelength anti-reflective grating made from GaAs material is proposed, with optional wavelength and polarization mode and a working wavelength of 976 nm. On the basis of effective medium theory and membrane theory, the grating is initially designed. Parameters of duty cycle, ridge height and period of the grating are optimized and determined according to the rigorous coupled wave theory. Meanwhile, the influence of various parameters on the grating transmissivity is analyzed. The designed anti-reflective grating is of high transmissivity, 99.99% for TE mode and 99.86% for TM mode, respectively. In the range of 976 nm± 30 nm, the transmissivity is above 99% for both mode gratings, which meets the requirements of device application. The effect of non-rectangular shape of the grating caused by fabrication error on the transmissivity and dominant polarization mode is studied.
参考文献

[1] Qi F, Ma Q Y, Wang Y F, et al. Large-aperture subwavelength grating coupler[J]. Applied Optics, 2016, 55(11): 2960-2966.

[2] Liu L, Deng Q Z, Zhou Z P. Subwavelength-grating-assisted broadband polarization-independent directional coupler[J]. Optics Letters, 2016, 41(7): 1648-1651.

[3] Wang Y, Shi W, Wang X, et al. Design of broadband subwavelength grating couplers with low back reflection[J]. Optics Letters, 2015, 40(20): 4647-4650.

[4] Zhang J J, Yang J B, Lu H Y, et al. Subwavelength TE/TM grating coupler based on silicon-on-insulator[J]. Infrared Physics & Technology, 2015, 71: 542-546.

[5] Li H Q, Cui B B, Liu Y, et al. Investigation of the chip to photodetector coupler with subwavelength grating on SOI[J]. Optics & Laser Technology, 2016, 76: 79-84.

[6] Li X F, Peng W, Zhao Y L, et al. A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index[J]. Chinese Physics B, 2015, 25(3): 037303.

[7] Du M D, Sun J Q. Performance enhancement of photodetector using defect subwavelength metallic grating[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2646-2649.

[8] Wang R, Li T, Shao X M, et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14471-14476.

[9] Xu L H, Zheng G G, Zhao D L, et al. Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(2): 955-958.

[10] Nikkhah H, Hall T J. Subwavelength grating waveguides for integrated photonics[J]. Applied Physics A, 2016, 122(4): 1-6.

[11] Tian H, Cui X, Du Y, et al. Broadband high reflectivity in subwavelength-grating slab waveguides[J]. Optics Express, 2015, 23(21): 27174-27179.

[12] Liang H M, Wang J Q, Wang X, et al. Surface plasmon interference lithography assisted by a Fabry-Perot cavity composed of subwavelength metal grating and thin metal film[J]. Chinese Physics Letters, 2015, 32(10): 51-54.

[13] Huo F, Li Y F, To S, et al. Optimal design of broadband antireflective subwavelength gratings for solar applications[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2626-2628.

[14] Gebski M, Dems M, Wasiak M, et al. Monolithic subwavelength high-index-contrast grating VCSEL[J]. IEEE Photonics Technology Letters, 2015, 27(8): 1953-1956.

[15] Yao D Y, Zhang J C, Liu Y H, et al. Small divergence substrate emitting quantum cascade laser by subwavelength metallic grating[J]. Optics Express, 2015, 23(9): 11462-11469.

[16] Takashima Y, Tanabe M, Haraguchi M, et al. Highly polarized emission from a GaN-based ultraviolet light-emitting diode using a Si-subwavelength grating on a SiO2 underlayer[J]. Optics Communication, 2016, 369(15): 38-43.

[17] Honma H, Takahashi K, Ishida M, et al. Continuous control surface-plasmon excitation wavelengths using nanomechanically stretched subwavelength grating[J]. Applied Physics Express, 2016, 9(2): 027201.

[18] Indumathi R S, Li Y, William F D, et al. Subwavelgnth grating based metal-oxide nano-hair structures for optical vortex generation[J]. Optics Express, 2015, 23(15): 19056-19065.

[19] 马佑桥, 周骏, 孙铁囤, 等. 基于等效介质理论的光伏电池亚波长光栅减反结构设计[J]. 太阳能学报, 2010, 31(10): 1353-1357.

    Ma Youqiao, Zhou Jun, Sun Tietun, et al. Design of antireflection structure of photovoltaic cells with sub-wavelength grating based on EMT[J]. Acta Energiae Solaris Sinica, 2010, 31(10): 1353-1357.

[20] 曹召良. 亚波长抗反射光栅的设计分析与制作[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2003: 26-27.

    Cao Zhaoliang. Design analysis and fabrication of subwavelength antireflective gratings[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003: 26-27.

[21] Rytov S M. Electromagetic properties of a finely stratified medium[J]. Soviet Physics JETP, 1956, 2(3): 466-475.

[22] 罗晨晨. 微纳光栅的制备及特性研究[D]. 上海: 上海交通大学, 2013: 26-27.

    Luo Chenchen. Research on the fabrication and properties of mirco/nano grating[D]. Shanghai: Shanghai Jiao Tong University, 2013: 26-27.

[23] 唐晋发, 郑权. 应用薄膜光学[M]. 上海: 上海科学技术出版社, 1984: 45-46.

    Tang Jinfa, Zheng Quan. Applied thin film optics[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1984: 45-46.

[24] 李云芳. 亚波长光学元件光学特性的研究[D]. 长春: 长春理工大学, 2013: 6-9.

    Li Yunfang. Study on optical characteristics of subwavelength optical elements[D]. Changchun: Changchun University of Science and Technology, 2013: 6-9.

[25] Moharam M G, Eric B G, Drew A P, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

[26] Gaylord T K, Moharam M G. Analysis and applications of optical diffraction by gratings[J]. Proceedings of the IEEE, 1985, 73(5): 894-937.

田锟, 邹永刚, 海一娜, 王丹, 白云峰, 范杰, 王海珠, 马晓辉. 亚波长抗反射光栅的设计[J]. 中国激光, 2016, 43(9): 0901004. Tian Kun, Zou Yonggang, Hai Yina, Wang Dan, Bai Yunfeng, Fan Jie, Wang Haizhu, Ma Xiaohui. Design of Subwavelength Anti-Reflective Grating[J]. Chinese Journal of Lasers, 2016, 43(9): 0901004.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!