光学学报, 2006, 26 (10): 1522, 网络出版: 2006-10-31  

Tm3+掺杂玻璃激光致冷新方案的理论分析

Theoretical Analysis on New Scheme to Cool Tm3+Doped Glass Sample
作者单位
华东师范大学物理系光谱学与波谱学教育部重点实验室, 上海 200062
摘要
提出了一种用于块状Tm3+掺杂玻璃ZBLANP(ZrF4BaF2LaF3NaFPbF2)激光致冷的新方案,即通过两组相互垂直的高反射率平面镜的多次反射,增加对抽运光的吸收,为了减少抽运光在样品表面入射时的反射损失,抽运光以布儒斯特角入射。重点就该方案的样品致冷温度和时间常量进行了详细的理论计算与分析,从理论上分析了入射激光功率为1 W时致冷功率和反射次数的关系,研究了不同入射激光功率下致冷温度和反射次数的关系。结果表明,入射激光功率分别为3 W、4 W、5 W时,样品可以分别从室温(300 K)被冷却到275.7 K、267.4 K、259.1 K。特别是在入射激光功率为4.5 W时,样品从室温开始被冷却到263.2 K ,即致冷后样品的温度下降了36. 8K, 比传统致冷方法提高了约53.3%,相应的致冷时间常量为22.7 min。
Abstract
A new scheme to realize laser cooling of blocky Tm3+doped glass ZBLANP (ZrF4BaF2LaF3NaFPbF2) is proposed. In this scheme, the absorption of pumping laser power is greatly enhanced by multiple reflections between two sets of mirrors with high reflectance, and with the incident angle of the pumping laser being Brewster angle, the reflection losses on the two endfaces of the sample are reduced to nearly zero. The cooling temperature of the bulk sample and its cooling time constant in this scheme are calculated in detail, and the relationship between cooling power and number of passes with 1 W incident laser power and between sample temperature and number of passes under the different incident laser power is studied . It is found that the sample is cooled from ambient temperature (300 K) to 275.7 K, 267.4 K and 259.1 K when the incident laser power are 3 W, 4 W and 5 W respectively. Especially, when the incident laser power is 4.5 W, the sample temperature is reduced to 263.2 K, namely, the sample temperature change is 36.8 K, which is 1.53 times of that froma conventional scheme, and the corresponding cooling time constant is about 22.7 min.
参考文献

[1] . I. Epstein, M. I. Buchwald, B. C. Edwards et al.. Observation of laserinduced fluorescent cooling of a solid[J]. Nature, 1995, 377(6549): 500-503.

[2] . C. Edwards, M. I. Buchwald, R. I. Epstein. Development of the Los Alamos solidstate optical refrigerator[J]. Rev. Sci. Instruments, 1998, 69(5): 2050-2055.

[3] . Study on the fluorescent cooling by energy transfer within inhomogenous line shape in solids[J]. Acta Physcica Sinica, 1998, 47(8): 1397-1403.

[4] Jia Youhua, Yin Jianping. Research on laser cooling in thuliumdoped materials[J]. Acta Optica Sinica, 2005, 25(10): 1375~1379 (in Chinese)
贾佑华,印建平. Tm3+掺杂材料激光冷却的研究[J]. 光学学报, 2005, 25(10): 1375~1379

[5] Zhang Long, Qi Changhong, Lin Fengying et al.. IR emission and frequency upconversion in Tm3+ doped fluoroaluminate glass[J]. Acta Optica Sinica, 2002, 22(2): 233~237 (in Chinese)
张龙,祁长鸿,林凤英 等. Tm3+离子掺杂氟铝酸盐玻璃红外及上转换光谱性质[J]. 光学学报, 2002, 22(2): 233~237

[6] Li Jiacheng, Li Shunguang, Hu Hefang et al.. Spectroscopy of Yb3+doped fluoroaluminate glasses[J]. Chin. J. Lasers, 2004, 31(2): 232~236 (in Chinese)
李家成,李顺光,胡和方 等. Yb3+掺杂氟铝酸盐玻璃的光谱性质[J]. 中国激光,2004, 31(2): 232~236

[7] Xu Shiqing, Yang Zhongmin, Wang Guonian et al.. The up conversion luminescence of Er3+/Yb3+ codoped oxyf luorosilicate glasses[J]. Acta Optica Sinica, 2004, 24(8): 1103~1106 (in Chinese)
徐时清,杨中民,汪国年 等. Er3+/Yb3+共掺杂氧氟硅酸盐玻璃的上转换发光[J]. 光学学报, 2004, 24(8): 1103~1106

[8] Xu Shiqing, Wang Guonian, Yang Zhongmin et al.. Spectra properties and Upconversion mechanisms of Er3+ doped heavy metal oxyfluoride germanate glass[J]. Chin. J. Lasers, 2004, 31(10): 1198~1202 (in Chinese)
徐时清, 汪国年, 杨中民 等. Er3+掺杂重金属氧氟锗酸盐玻璃的光谱性质和上转换机理[J]. 中国激光, 2004, 31(10): 1198~1202

[9] . E. Mungan, M. I. Buchwald, B. C. Edward et al.. Laser cooling of a solid by 16 K starting from room temperature[J]. Phys. Rev. Lett., 1997, 78(6): 1030-1033.

[10] . Luo, M. D. Eisaman, T. R. Gosnell. Laser cooling of a solid by 21 K starting from room temperature[J]. Opt. Lett., 1998, 23(8): 639-641.

[11] . R. Gosnell. Laser cooling of a solid by 65 K starting from room temperature[J]. Opt. Lett., 1999, 24(15): 1041-1043.

[12] . Rayner, N. R. Heckenberg, H. RubinszteinDunlop. Condensedphase optical refrigeration[J]. J. Opt. Soc. Am. B, 2003, 20(5): 1037-1053.

[13] Qin Weiping, Chen Baojiu, Zhang Yongxu et al.. Development of fluorescent cryocooler in future[J]. Chin. J. Luminescence, 2001, 22(1): 37~42 (in Chinese)
秦伟平,陈宝玖,张永旭 等. 荧光致冷器的未来发展[J]. 发光学报, 2001, 22(1): 37~42

[14] B. C. Edwards, M. I. Buchwald, R. I. Epstein. Optical refrigerator using reflectivity tuned dielectric mirrors[P]. U.S. patent ,2000, 6,041,610

[15] . Heeg, M. D. Stone, A. Khizhnyak et al.. Experimental demonstration of intracavity solidstate laser cooling of Yb3+∶ZrF4BaF2LaF3AlF3NaF glass[J]. Phys. Rev. A, 2004, 70(2): 021401.

[16] . W. Hoyt, M. P. Hasselbeck, M. SheikBahae et al.. Advances in laser cooling of thuliumdoped glass[J]. J. Opt. Soc. Am. B, 2003, 20(5): 1066-1074.

[17] C. W. Hoyt. Laser cooling in thuliumdoped solids[D]. New Mexico: University of New Mexico Albuquerque, 2003. 5, 65~80

[18] . Lamouche, P. Lavallard, R. Suris et al.. Low temperature laser cooling with a rareearth doped glass[J]. J. App. Phys., 1998, 84(1): 509-516.

[19] . W. Hoyt, M. SheikBahae, R. I. Epstein et al.. Observation of antiStokes fluorescence cooling in thuliumdoped glass[J]. Phys. Rev. Lett., 2000, 85(17): 3600-3603.

孙海生, 贾佑华, 印建平. Tm3+掺杂玻璃激光致冷新方案的理论分析[J]. 光学学报, 2006, 26(10): 1522. 孙海生, 贾佑华, 印建平. Theoretical Analysis on New Scheme to Cool Tm3+Doped Glass Sample[J]. Acta Optica Sinica, 2006, 26(10): 1522.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!