中国激光, 2006, 33 (6): 721, 网络出版: 2006-06-13   

超强固体激光及其在前沿学科中的应用(1) 下载: 612次

Ultraintense Solid-State Lasers and Applications to the Frontiers of Sciences
作者单位
中国工程物理研究院,四川 绵阳 621900
摘要
20世纪80年代中期发展起来的啁啾脉冲放大(CPA)技术与先进的高功率激光技术及优良的激光增益介质相结合把激光峰值输出功率提高了几个数量级,出现了输出拍瓦级(1015 W)皮秒(10-12 s)和飞秒(10-15 s) 脉冲的固体激光装置,聚焦峰值功率密度达到1020~1022 W/cm2。激光与物质相互作用的物理过程中,激光功率密度起主导作用,不同光强对应不同的物理学领域。如此高的激光功率密度能够在实验室中产生前所未有的极端物态条件,即超强电场、超强磁场和超高压强等,从而开创了崭新的强场物理领域,推动了相关学科的交叉融合,形成了多个前沿研究方向,如粒子加速、强辐射源、先进光源、阿秒物理、快点火聚变、超热物质、激光核物理、超快过程诊断、激光天体物理、非线性量子电动力学(QED)等,在材料科学、生命科学和医学等领域中也极具应用价值。
Abstract
Peak output powers of solid-state laser facilities have tremendously increased by a few orders of magnitude since the middle of last eighties due to the combination of the technique of chirped pulse amplification (CPA), advanced high-power laser technologies and novel laser materials. Petawatt (PW) level laser facilities have been built for picosecond and femtosecond pulses with focused intensities of up to 1020~1022 W/cm2. Laser intensities play dominant roles in understanding the physics of laser-plasma interactions and, therefore, different intensities open different physics areas to study. Such high laser intensities are able to produce extreme conditions: ultraintense electric and magnetic fields, and ultrahigh pressure, leading to the emerging of strong-field physics. A numbrer of multidisciplinary frontiers have been explored, such as particle acceleration, intense radiation source, advanced light source, attosecond physics, fast ignition fusion, superhot matter, nuclear physics, ultrafast proccess diagnosing, laser astrophysics, nonlinear quantum electrodynamics (QED) and so on. Also, there exist invaluable potentials in material, biological and medical applications.
参考文献

[1] . Strickland, G. Mourou. Compression of amplified chirped optical pulses[J]. Opt. Commun., 1985, 56(3): 219-221.

[2] M. D. Perry. Crossing the patawatt threshold [J]. Sci. & Technol. Rev., 1996, (Dec.):4~11

[3] . Backus, C. G. Durfee Ⅲ, M. M. Murnane et al.. High power ultrafast lasers[J]. Rev. Sci. Instrum., 1988, 69(3): 1207-1223.

[4] . Maine, D. Strickland, P. Bado et al.. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE J. Quantum Electron., 1988, 24(2): 398-403.

[5] . A. Mourou, C. P. J. Barty, M. D. Perry, Ultrahigh-intensity lasers: Physics of the extreme on a tabletop[J]. Phys. Today, 1998, 22(1): 22-28.

[6] . D. Perry, D. Pennington, B. C. Staurt et al.. Pettawatt laser pulses[J]. Opt. Lett., 1999, 24(3): 161-162.

[7] Peng Hansheng. High-power ultrshort-pulse lasers and amazing phenomena of physics [J]. High Power Laser and Particle Beams, 2000, 12(4):386~391
彭翰生. 高功率超短脉冲激光与新奇物理现象[J]. 强激光与粒子束, 2000, 12(4):386~391

[8] Y. Kitagawa, R. Kodama, H. Yoshida. GEKKO Ⅻ petawatt module (PWM) project [R]. ILE Osaka Univ.Ann.Progr.Rep.,1998. 17

[9] Y. Kitagawa, H. Fujita, R. Kodama. Prepulse-free petawatt laser for fast ignitor [R]. ILE Osaka Univ.Ann.Progr.Rep., 2002. 12~21

[10] . A. Norreys, S. Sakabe, K. A. Tanaka et al.. Fast heating scalable to fast fusion ignition[J]. Nature, 2002, 418: 933.

[11] M. Miyanaka, H. Azechi, K. A. Tanaka et al.. FIREX petawatt laser development for fast ignition research at ILE, Osaka [C]. IFSA2003, Monterey Sept. 7~12, 2003. 507~511

[12] . N. Danson, P. A. Brummitt, R. J. Clarke et al.. Vulcan pettawatt- an ultra-high-intensity interaction facility[J]. Nucl. Fusion, 2004, 44: s239-s249.

[13] W. Seka, J. M. Soures. OMEGA EP Project [R]. Progr. Rep., Lab. for Laser Energetics, 2003. Feb.

[14] T. J. Kessler, J. Bunkenburg, H. Huang et al.. The coherent addition of gratings for pulse compression in high-energy laser systems [C]. IFSA2003, Monterey Sept. 7~12, 2003. 621~625

[15] C. Le Blanc, C. Felix, J. C. Lagron et al.. The petawatt laser glass chain at LULI: from the diode-pumped front end to the new generation of compact compressors [C]. IFSA2003, Monterey Sept. 7~12, 2003. 608~611

[16] P. Neumayer, R. Bock, S. Borneis et al.. Status of PHELIX laser first experiments [C]. ⅩⅩⅧ I ECLIM, Rome, Sept. 6~10, 2004. 1~5

[17] . R. Bennett, O. L. Landen, R. F. Adams et al.. X-ray imaging techniques on Z using the Z-Beamlet laser[J]. Rev. Sci. Instrum., 2001, 72(1): 657-662.

[18] C. P. J. Barty, M. Key, J. Britten et al..Technical challenges and motivations for high energy petawatt lasers on NIF [C]. IFSA2003, Monterey Sept. 7~12, 2003. 612~615

[19] N. Blanchot, E. Bignon, H. Hulin et al.. Technical issues in the multi-petawatt laser facility project on Line Integration Laser(LIL) [C]. IFSA2003, Monterey Sept. 7~12, 2003. 642~645

[20] Xie Xinglong, Zhu Jiangqiang, Liu Fengqiao et al.. 20 TW sub-picosecond laser system(SPS) applied for the neutron experiment [J]. Chinese J. Lasers, 2003, 30(10):865~872
谢兴龙,朱健强,刘凤翘 等. 20 TW亚皮秒激光系统(SPS)与中子产生实验研究[J]. 中国激光, 2003, 30(10):865~872

[21] X. L. Xie, F. Q. Liu, J. X. Yang et al.. Dual sub-picosecond and sub-nanosecond laser system [J]. Chin. Opt. Lett., 2003, 1(11):658~660

[22] J. D. Bonlie, F. Patterson, D. Price et al.. Production of >1021 W/cm2 from a large-aperture Ti:sapphire laser system [J]. Appl. Phys. B, 2002, 70(Suppl.):155~160

[23] . Yamakawa, M. Aoyama, S. Matsuoka et al.. 100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate[J]. Opt. Lett., 1998, 23(18): 1468-1470.

[24] . Yamakawa, M. Aoyama, Y. Akahane et al.. Generation of a 0.55-PW, 33-fs laser pulse from a Ti:sapphire laser system[J]. Laser Letter, 2002, 30(12): 747-748.

[25] . Aoyama, K. Yamakawa, Y. Akahane et al.. 0.85-PW, 33-fs Ti:sapphire laser[J]. Opt. Lett., 2003, 28(17): 1594-1596.

[26] . Pittman, S. Ferre, J. P. Rousseau et al.. Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system[J]. Appl. Phys. B, 2002, 74(6): 529-535.

[27] . W. Bahk, P. Rousseau, T. A. Planchon et al.. Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2)[J]. Appl. Phys. B, 2005, 80(7): 823-832.

[28] . C. Walker, C. Toth, D. N. Fittinghoff et al.. A 50-EW Ti:sapphire laser system for studying relativistic light-matter interactions[J]. Opt. Express, 1999, 5(10): 196-202.

[29] I. W. Choi, T. J. Yu, J. H. Sung et al.. APRI ultrashort high-intensity laser system and application experiments [C]. The 13th Intern. Symp. on Laser Spectroscopy, 2005 (to be published)

[30] J. L. Collier. The Astra GEMINI project-an overview [R]. CLF Ann. Rep. 2004/2005. 210

[31] . Y. Wei, Y. Kobayashi, Z. G. Zhang et al.. Generation of two-color femtosecond pulses by self-sychronizing Ti:sapphire and Cr:forsterite lasers[J]. Opt. Lett., 2001, 26(22): 1806-1808.

[32] . R. Yian, Z. Y. Wei, P. Wang et al.. Independently tunable 1.3 W femtosecond lasers passively synchronized with attosecond timing jitter and ultrahigh robustness[J]. Opt. Express, 2005, 30(16): 2161-2163.

[33] . D. Yang, Z. Z. Xu, Y. X. Leng et al.. Multiterawatt laser system based on optical parametric chirped pulse amplification[J]. Opt. Lett., 2002, 27(13): 1135-1137.

[34] Z. Z. Xu, X. D. Yang, Y. X. Leng et al.. High-power output from a compact OPCPA laser system [J]. Chin. Opt. Lett., 2003, 1(1):24~27

[35] Xu Jun, Si Jiliang, Li Hongjun et al.. 100 TW CPA fs laser output of Ti:sapphire crystal in SIOM [J]. J. Synthetic Crystal, 2004, 33(5):875~876
徐军,司继良,李红军 等. 大尺寸钛宝石晶体CPA超短超强激光输出突破100太瓦[J]. 人工晶体学报, 2004, 33(5):875~876

[36] H. S. Peng, X. J. Huang, Q. H. Zhu et al.. 286-TW Ti:sapphire laser at CAEP [C]. SPIE, 2004, 5627:1~5

[37] . S. Peng, W. Y. Zhang, X. M. Zhang et al.. Progress in ICF programs at CAEP[J]. Laser and Particle Beams, 2005, 23: 205-209.

[38] Huang Xiaojun, Peng Hansheng, Wei Xiaofeng et al.. Ultra-short ultra-intense Ti:sapphire laser facility with peak power of hundred-terawatt-level [J]. High Power Laser and Particle Beams, 2005, 17(11):1685~1688
黄小军,彭翰生,魏晓峰 等. 100 TW级超短超强钛宝石激光装置[J]. 强激光与粒子束, 2005, 17(11):1685~1688

[39] . S. Peng, X. J. Huang, Q. H. Zhu et al.. SILEX-Ⅰ: 300-TW Ti:sapphire laser[J]. Laser Physics, 2006, 16(2): 244-247.

[40] . . Compensation of gain narrowing by using AOPDF in high-power ultrashort pulse laser systems[J]. Acta Physica Sinica, 2005, 54(6): 2764-2768.

[41] Liu Lanqin, Peng Hansheng, Wei Xiaofeng et al.. Spectrral gain narrowing compensation modulation function in high-power ultrashort-pulse laser system [J]. High Power Laser and Particle Beams, 2005, 17(6):856~860
刘兰琴,彭翰生,魏晓峰 等. 高功率超短脉冲激光系统中增益窄化补偿的调制函数[J]. 强激光与粒子束, 2005, 17(6):856~860

[42] . Tajima, G. Mourou. Zettawatt-exawatt lasers and their applications in ultrastrong-field physics[J]. Phy. Rev., ST-accelerators and Beams, 2002, 5(031301): 031301-1.

[43] . Tournois. Acausto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems[J]. Opt. Comm., 1997, 140: 245-249.

[44] . Verluise, V. Laude, J. P. Huignard et al.. Arbitrary dispersion control of ultrashort optical pulses with acoustic waves[J]. Opt. Soc. Am. B, 2002, 17(1): 138-145.

[45] . B. Wharton, C. D. Boley, A. M. Komashko et al.. Effects of nonionizing prepulses in high-intensity laser-solid interactions[J]. Phys. Rev. E, 2001, 64: 025401-1.

[46] . C. Kapteyn, M. M. Murnane, A. Szoke et al.. Prepulse energy suppressoion for high-energy ultrashort pulses using self-induced plasma shuttering[J]. Opt. Lett., 1991, 16(7): 490-492.

[47] . Monot, G. Doumy, S. Dobosz et al.. High-order harmonic generation by nonlinear reflection of an intense high-contrast laser pulse on a plasma[J]. Opt. Lett., 2004, 29(8): 893-895.

[48] . Ziener, P. S. Foster, E. J. Divall et al.. Specular reflectivity of plasma mirrors as a function of intensity, pulse duration and angle of incidence[J]. J. Appl. Phys., 2003, 93(1): 768-770.

[49] B. Dromey, S. Kar, M. Zepf et al.. High contrast for TW-PW lasers-plasma mirrors operated in the near field [R]. CLF Ann. Rep., 2002/2003. 76~77

[50] . M. Gold. Direct measurement of prepulse suppression by use of a plasma shetter[J]. Opt. Lett., 1994, 19(23): 2006-2008.

[51] . F. Price, R. M. More, R. S. Walling et al.. Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV[J]. Phys. Rev. Lett., 1995, 75(2): 252-255.

[52] . Jiang, J. C. Kieffer, J. P. Matte et al.. X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018-1019 W/cm2[J]. Phys. Plasmas, 1995, 2(5): 1702-1711.

[53] . Hacker, R. Netz, M. Roth et al.. Frequency doubling of phase-modulated, ultrashort laser pulses[J]. Appl. Phys. B, 2001, 73(3): 273-277.

[54] . A. Begishev, M. Kalashnikov, V. Karpov et al.. Limitation of second-harmonic generation of femtosecond Ti:sapphire laser pulses[J]. J. Opt. Soc. Am. B, 2004, 21(2): 318-322.

[55] . Harimoto, Y. Takeuchi, M. Fujita. Spectral properties of second-harmonic generation at 800 nm in a BiB3O6 crystal[J]. Opt. Express, 2004, 12(5): 811-816.

[56] . Y. Zhu, T. Wang, W. G. Zheng et al.. Effective second harmonic generation of femtosecond laser at 1 μm[J]. Opt. Express, 2004, 12(10): 2150-2155.

[57] . H. Hong, B. Hou, J. A. Nees et al.. Generation and measurement of >108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser[J]. Appl. Phys. B, 2005, 81(4): 447-457.

[58] . Wojtkiewicz, C. G. Durfee. High-energy, high-contrast, double-confocal multipass amplifier[J]. Opt. Express, 2004, 12(7): 1383-1388.

[59] . P. Kalashnikov, E. Risse, H. Schonnagel et al.. Characterization of a nonlinear filter for the front-end of a high contrast double-CPA Ti:sapphire laser[J]. Opt. Express, 2004, 12(21): 5088-5097.

[60] . Homoelle, A. L. Gaeta, V. Yanovsky et al.. Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide[J]. Opt. Lett., 2002, 27(18): 1646-1648.

[61] H. Yashida, E. Ishii, R. Kodama et al.. High-power and high-contrast optical parametric chirped pulse amplification in BBO crystal [R]. ILE Osaka Univ. Ann. Progr.Rep., 2002. 185~186

[62] I. Jovanovic, B. Wattellier, C. P. J. Barty. Parametric technique for extreme-contrast, high-energy petawatt pulses [C]. IFSA2003, Monterey Sept. 7~12, 2003. 646~649

[63] . Druon, G. Cheriaux, J. Faure et al.. Wave-front correction of femtosecond terawatt lasers by deformable mirrors[J]. Opt. Express, 1998, 23(13): 1043-1045.

[64] . Baumhacker, G. Pretzler, K. J. Witte et al.. Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser[J]. Opt. Lett., 2002, 27(17): 1570-1572.

[65] . Akahane, J. L. Ma, Y. Fukuda et al.. Characterization of wave-front corrected 100 TW, 10 Hz laser pulses with peak intensities greater than 1020 W/cm2[J]. Rev. Sci. Instrum., 2006, 77(2): 023102-1.

[66] . M. Zhang, D. Y. Fan, X. M. Zeng et al.. Acquiring 1053 nm femtosecond laser emmision by optical parametric amplification based on supercontinuum white-light injection[J]. Opt. Express, 2006, 31(6): 646-648.

[67] A. Dubietis, G. Jonusauskas, A. Piskarskas. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal [J]. Opt. Commun., 1992, 88(4-6):437~440

[68] I. N. Ross, P. Matousek, M. Towrie et al.. The prospects for ultrashort pulse duration ultrahigh intensity usingn optical parametric chirped pulse amplification [J]. Opt. Commun., 1997, 144(1-3):125~133

[69] . Wang, M. H. Dunn, C. F. Rae. Polychromatic optical parametric generation by simultaneous phase matching over a large spectral bandwidth[J]. Opt. Lett., 1997, 22(11): 763-765.

[70] . Matousec, B. Rus, I. N. Ross. Design of multi-petawatt optical parametric chirped pulse amplifier for the iodine laser ASTERIX Ⅳ[J]. IEEE J. Quantum Electron., 2000, 36(2): 158-163.

[71] . L. Collier, C. Hernandez-Gomez, I. N. Ross et al.. Evaluation of an ultrabroadband high-gain amplification technique for chirped pulse amplfication facilities[J]. Appl. Opt., 1999, 38(36): 7486-7493.

[72] . N. Ross, J. L. Collier, P. Matousek et al.. Generation of terawatt pulses by use of optical parametric chirped pulse amplification[J]. Appl. Opt., 2000, 39(15): 2422-2427.

[73] . N. Ross, P. Matousek, G. H. C. New et al.. Analysis and optimization of optical parametric chirped pulse amplification[J]. J. Opt. Soc. Am. B, 2002, 19(12): 2945-2956.

[74] . D. Hang, Z. Z. Xu, Y. X. Leng. Multiterawatt laser system based on optical parametric chirped pulse amplification[J]. Opt. Lett., 2002, 27(13): 1135-1137.

[75] J. C. Collier, I. N. Ross, L. Cardoso et al.. Progress towards petawatt level OPCPA [C]. IFSA2003, Monterey Sept. 7~12, 2003. 603~607

[76] V. Bagnoud, I. A. Begishev, M. J. Guardalben et al.. Optical parametric chirped -pulse amplifier as the front end for the Omega EP laser chain [C]. IFSA2003, Monterey Sept. 7~12, 2003. 670~673

[77] B. Schmidt, P. S. Banks, D. Du. S. P. Jensen et al.. The design and performance of OPCPA based terawatt and petawatt lasers [C]. IFSA2003, Monterey Sept. 7~12, 2003. 674~676

[78] . Jovanovic, B. J. Comaskey, C. A. Ebbers et al.. Optical parametric chirped -pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers[J]. Appl. Opt., 2002, 41(15): 2923-2929.

[79] . Bagnoud, I. A. Begishev, M. J. Guardalben et al.. 5 Hz, >250 mJ optical parametric chirped -pulse amplifier at 1.053 nm[J]. Opt. Lett., 2005, 30(14): 1843-1845.

[80] . V. Lozhkarev, G. I. Freidman, V. N. Ginzburg et al.. 200 TW 45 fs laser based on optical chirped pulse amplification[J]. Opt. Express, 2005, 14(1): 446-454.

彭翰生. 超强固体激光及其在前沿学科中的应用(1)[J]. 中国激光, 2006, 33(6): 721. 彭翰生. Ultraintense Solid-State Lasers and Applications to the Frontiers of Sciences[J]. Chinese Journal of Lasers, 2006, 33(6): 721.

本文已被 21 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!