Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF) for enhancing the temporal contrast of the laser pulse. About 2 orders of magnitude improvement on pulse contrast was measured on picosecond and nanosecond time scales. The experiments show that high-contrast laser pulses can significantly improve the cutoff energy and quantity of proton beams. Then different target distributions are assumed in particles in cell simulations, which can qualitatively assume the expansion of nanometer-scale foil. The high-contrast laser enables the SULF-1PW beamline to generally be of benefit for many potential applications.
ultraintense laser plasma mirror high-contrast laser proton acceleration 
Chinese Optics Letters
2023, 21(4): 043802
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (MOE), Collaborative Innovation Center of IFSA, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
2 Joint Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
In strong-field physics experiments with ultraintense lasers, a single-shot cross-correlator (SSCC) is essential for fast optimization of the pulse contrast and meaningful comparison with theory for each pulse shot. To simultaneously characterize an ultrashort pulse and its long pedestal, the SSCC device must have both a high resolution and a large temporal window. However, the resolution and window in all kinds of single-shot measurement contradict each other in principle. Here we propose and demonstrate a novel SSCC device with two separate measurement channels: channel-1 for the large-window pedestal measurement has a moderate resolution but a large window, while channel-2 for the ultrashort pulse measurement has a small window but a high resolution; this allows the accurate characterization of the pulse contrast in a single shot. A two-channel SSCC device with a 200-fs resolution and 114-ps window has been developed and tested for its application in ultraintense lasers at 800 nm.
pulse contrast single-shot cross-correlator ultrashort ultraintense laser 
High Power Laser Science and Engineering
2022, 10(6): 06000e43
王鹏 1宣雅萍 1,2徐艺林 1,2申雄 1[ ... ]李儒新 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室,中国科学院超强激光科学卓越创新中心,上海 201800
2 中国科学院大学 材料与光电研究中心,北京 100049
超快超强激光可以在实验室创造出超快时间、超强电场、超强磁场、超高温度及超高压力等多种极端物理实验条件,是当前拓展人类对物质世界认知最强有力的工具之一。在超快超强激光的发展过程中,飞秒四波混频过程在多个方面都发挥着非常重要的作用。本文介绍了飞秒四波混频过程在超快超强激光中近年来的一些进展和应用,系统总结了近年来利用级联四波混频、自衍射效应、瞬态光栅效应、四波光参量放大,以及交叉偏振波产生等飞秒四波混频过程,在宽带高对比度种子激光产生,新颖同心多色涡旋/径向偏振飞秒超快光源构建,“四阶相关仪”等脉冲对比度单发测量仪研制,以及脉冲形状宽度单发测量仪研制等方面的成果与进展。未来,飞秒四波混频过程还可拓展到太赫兹和极紫外等波段,继续为超快超强激光技术的发展做出重要贡献。
四波混频 超快激光 超强激光 脉冲测量 Four-wave mixing Ultrafast laser Ultraintense laser Pulse measurement 
光子学报
2022, 51(10): 1014002
Author Affiliations
Abstract
1 Intense Laser Irradiation Laboratory, INO-CNR, Pisa, Italy
2 ELI-NP, Magurele, Ilfov, Romania
3 Maison de la Simulation, CEA, USR 3441, Gif-sur-Yvette, France
4 INFN, Sect. of Pisa, Pisa, Italy
After the introduction of the ionization-injection scheme in laser wake field acceleration and of related high-quality electron beam generation methods, such as two-color and resonant multi-pulse ionization injection (ReMPI), the theory of thermal emittance has been used to predict the beam normalized emittance obtainable with those schemes. We recast and extend such a theory, including both higher order terms in the polynomial laser field expansion and non-polynomial corrections due to the onset of saturation effects on a single cycle. Also, a very accurate model for predicting the cycle-averaged distribution of the extracted electrons, including saturation and multi-process events, is proposed and tested. We show that our theory is very accurate for the selected processes of ${\mathrm{Kr}}^{8^{+}\to {10}^{+}}$ and ${\mathrm{Ar}}^{8^{+}\to {10}^{+}}$ , resulting in a maximum error below 1%, even in a deep-saturation regime. The accurate prediction of the beam phase-space can be implemented, for example, in laser-envelope or hybrid particle-in-cell (PIC)/fluid codes, to correctly mimic the cycle-averaged momentum distribution without the need for resolving the intra-cycle dynamics. We introduce further spatial averaging, obtaining expressions for the whole-beam emittance fitting with simulations in a saturated regime, too. Finally, a PIC simulation for a laser wakefield acceleration injector in the ReMPI configuration is discussed.
field theory ionization high-quality electron beams ionization injection laser wakefield acceleration laser–plasma acceleration resonant multi-pulse ionization injection tunnel ionization two-color ionization ultraintense laser pulses 
High Power Laser Science and Engineering
2022, 10(2): 02000e15
Author Affiliations
Abstract
1 Graduate School of Engineering, Osaka University, Suita, Osaka565-0875, Japan
2 Institute of Laser Engineering, Osaka University, Suita, Osaka565-0871, Japan
3 ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040Madrid, Spain
Microtube implosions are a novel scheme to generate ultrahigh magnetic fields of the megatesla order. These implosions are driven by ultraintense and ultrashort laser pulses. Using two- and three-dimensional particle simulations where megatesla-order magnetic fields can be achieved, we demonstrate scaling and criteria in terms of laser parameters, such as laser intensity and laser energy, to facilitate practical experiments toward the realization of extreme physical conditions, which have yet to be realized in laboratories. Microtube implosions should provide a new platform for studies in fundamental and applied physics relevant to ultrahigh magnetic fields.
microtube implosion megatesla magnetic field ultraintense laser 
High Power Laser Science and Engineering
2021, 9(4): 04000e56
Author Affiliations
Abstract
1 State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, School of Physics, Peking University, Beijing100871, China
2 Beijing Laser Acceleration Innovation Center, Beijing101400, China
3 Institute of Guangdong Laser Plasma Technology, Guangzhou510540, China
Carbon nanotube foams (CNFs) have been successfully used as near-critical-density targets in the laser-driven acceleration of high-energy ions and electrons. Here we report the recent advances in the fabrication technique of such targets. With the further developed floating catalyst chemical vapor deposition (FCCVD) method, large-area ($>25\kern0.5em {\mathrm{cm}}^2$) and highly uniform CNFs are successfully deposited on nanometer-thin metal or plastic foils as double-layer targets. The density and thickness of the CNF can be controlled in the range of $1{-}13\kern0.5em \mathrm{mg}/{\mathrm{cm}}^3$ and $10{-}200\kern0.5em \mu \mathrm{m}$, respectively, by varying the synthesis parameters. The dependence of the target properties on the synthesis parameters and the details of the target characterization methods are presented for the first time.
carbon nanotube foams laser-driven acceleration near-critical density targets ultraintense laser 
High Power Laser Science and Engineering
2021, 9(2): 02000e29
Author Affiliations
Abstract
LIDYL, CEA-CNRS, Université Paris-Saclay, 91191Gif-sur-Yvette, France
The quantum vacuum plays a central role in physics. Quantum electrodynamics (QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities >4.7×1029 W/cm2. Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of QED. Yet, the Schwinger limit is seven orders of magnitude above the present record in light intensity achieved by high-power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.
ultraintense laser-matter interaction strong-field quantum electrodynamics plasma mirrors attosecond light pulses 
High Power Laser Science and Engineering
2021, 9(1): 010000e6
作者单位
摘要
西安交通大学 应用物理系,西安 710049
本文从理论上研究了在双色频率梳激光场驱动下多光子谐波辐射光谱中的相位突变现象。我们利用Floquet理论非微扰地模拟了频率梳激光场与原子分子等量子系统的相互作用过程。谐波辐射信号是多光子偶极跃迁相干叠加的结果,通过调节频率梳激光场间的相对相位,可以相干地控制谐波辐射信号的强度。通过对谐波信号进行傅里叶变换,可以提取不同跃迁路径的相对相位信息。我们通过改变频率梳组激光场的强度和频率组分实现多光子跃迁频率,让其跨越共振跃迁频率时,谐波相位会发生突变。从而可以观测超强激光场驱动下量子系统共振跃迁频率的斯塔克能移。
相位突变 高次谐波的产生 斯塔克能移 超强激光 phase jump high-order harmonic generation Stark-shifted transition energy ultraintense laser 
强激光与粒子束
2020, 32(1): 011016
X. H. Yang 1,2,3,*C. Ren 2H. Xu 3,4Y. Y. Ma 1,3,5F. Q. Shao 1
Author Affiliations
Abstract
1 Department of Physics, National University of Defense Technology, Changsha410073, China
2 Department of Mechanical Engineering, University of Rochester, Rochester, New York14627, USA
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai200240, China
4 College of Computing Science, National University of Defense Technology, Changsha410073, China
5 State Key Laboratory of NBC Protection for Civilian, Beijing102205, China
Ultraintense laser-driven relativistic electrons provide a way of heating matter to high energy density states related to many applications. However, the transport of relativistic electrons in solid targets has not been understood well yet, especially in dielectric targets. We present the first detailed two-dimensional particle-in-cell simulations of relativistic electron transport in a silicon target by including the field ionization and collisional ionization processes. An ionization wave is found propagating in the insulator, with a velocity dependent on laser intensity and slower than the relativistic electron velocity. Widely spread electric fields in front of the sheath fields are observed due to the collective effect of free electrons and ions. The electric fields are much weaker than the threshold electric field of field ionization. Two-stream instability behind the ionization front arises for the cases with laser intensity greater than $5\times 10^{19}~\text{W}/\text{cm}^{2}$ that produce high relativistic electron current densities.
ionization wave relativistic electrons transport ultraintense laser 
High Power Laser Science and Engineering
2020, 8(1): 010000e2
作者单位
摘要
北京工业大学 激光工程研究院, 北京 100124
为了研究超强激光与薄膜靶相互作用在入射光反射方向引起的高次谐波辐射, 基于在入射激光的透射方向,相干同步辐射机制会导致高次谐波的产生, 采用粒子模拟方法研究了超强激光驱动固体密度薄膜靶(即高密度薄膜靶)高次谐波辐射在入射激光透射和反射方向的空间分布。结果表明, 当靶厚小于激光趋肤深度、靶等离子体密度远大于临界密度(800Nc)时, 在透射方向,相干同步辐射机制会导致高次谐波辐射, 同时在反射方向,存在相对论镜面振荡机制驱动的谐波场辐射, 证明了在超强激光-薄膜靶相互作用过程中两种谐波会产生共存机制; 讨论了在两种产生机制下, 靶厚度对谐波辐射阶次的影响, 发现靶厚度超过200nm, 透射方向谐波阶次达到65阶以上。该研究对深入理解超强激光-薄膜靶驱动高次谐波的产生及阿秒X射线光源的未来发展具有一定的理论意义。
激光物理 超强激光 薄膜靶 高次谐波 laser physics ultraintense laser foil target high-order harmonic 
激光技术
2018, 42(1): 113

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!