H. H. An 1,4W. Wang 1,4J. Xiong 1,4C. Wang 1,4,*[ ... ]J. Q. Zhu 2,4,*
Author Affiliations
Abstract
1 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai, China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
3 Center for Applied Physics and Technology, Peking University, Beijing, China
4 National Laboratory on High Power Laser and Physics, Shanghai, China
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
laser-driven proton acceleration SG-II Peta-watt laser target normal sheath acceleration 
High Power Laser Science and Engineering
2023, 11(5): 05000e63
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
The plasma mirror system was installed on the 1 PW laser beamline of Shanghai Superintense Ultrafast Laser Facility (SULF) for enhancing the temporal contrast of the laser pulse. About 2 orders of magnitude improvement on pulse contrast was measured on picosecond and nanosecond time scales. The experiments show that high-contrast laser pulses can significantly improve the cutoff energy and quantity of proton beams. Then different target distributions are assumed in particles in cell simulations, which can qualitatively assume the expansion of nanometer-scale foil. The high-contrast laser enables the SULF-1PW beamline to generally be of benefit for many potential applications.
ultraintense laser plasma mirror high-contrast laser proton acceleration 
Chinese Optics Letters
2023, 21(4): 043802
作者单位
摘要
1 潍坊学院 物理与光电工程学院, 山东 潍坊
2 光电信息控制和安全技术重点实验室, 天津
随着固体激光技术发展以及啁啾脉冲放大技术加持, 激光峰值功率得到极大的提高, 促进了激光物质相互作用领域的研究并衍生出若干具有很好前景的应用。激光驱动的台面级离子加速器便是其中重要的应用领域之一。激光加速的质子具有源体积小、脉冲时间短和时间分辨高等特点, 可以广泛应用于成像、医疗及科研领域, 并能有效降低这些领域的相关成本, 促进其高效发展。影响获得优质离子束的条件很多, 文中从靶形状及与激光作用后形成的等离子体性质角度对近期该研究方向的一些进展进行了总结及展望。
靶形状 等离子体性质 激光驱动 质子加速 target shape plasma properties laser-driven proton acceleration 
光电技术应用
2021, 36(3): 1
Author Affiliations
Abstract
1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstra?e 1, 64291 Darmstadt, Germany
2 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstra?e 1, 64291 Darmstadt, Germany
3 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstra?e 1, 64291 Darmstadt, Germany
4 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstra?e 1, 64291 Darmstadt, Germany
5 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstra?e 1, 64291 Darmstadt, Germany
6 Friedrich-Schiller-Universit?t, Fürstengraben 1, 07743 Jena, Germany
We present a study of laser-driven ion acceleration with micrometre and sub-micrometre thick targets, which focuses on the enhancement of the maximum proton energy and the total number of accelerated particles at the PHELIX facility. Using laser pulses with a nanosecond temporal contrast of up to $10^{-12}$ and an intensity of the order of $10^{20}~\text{W}/\text{cm}^{2}$, proton energies up to 93 MeV are achieved. Additionally, the conversion efficiency at $45^{\circ }$ incidence angle was increased when changing the laser polarization to p, enabling similar proton energies and particle numbers as in the case of normal incidence and s-polarization, but reducing the debris on the last focusing optic.
high power laser proton acceleration secondary sources 
High Power Laser Science and Engineering
2020, 8(2): 02000e24
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Department of Physics, Shanghai Normal University, Shanghai 200234, China
Multidimensional instabilities always develop with time during the process of radiation pressure acceleration, and are detrimental to the generation of monoenergetic proton beams. In this paper, a sharp-front laser is proposed to irradiate a triple-layer target (the proton layer is set between two carbon ion layers) and studied in theory and simulations. It is found that the thin proton layer can be accelerated once to hundreds of MeV with monoenergetic spectra only during the hole-boring (HB) stage. The carbon ions move behind the proton layer in the light-sail (LS) stage, which can shield any further interaction between the rear part of the laser and the proton layer. In this way, proton beam instabilities can be reduced to a certain extent during the entire acceleration process. It is hoped such a mechanism can provide a feasible way to improve the beam quality for proton therapy and other applications.
proton acceleration radiation acceleration sharp-front laser hole-boring stage light-sail stage 
High Power Laser Science and Engineering
2019, 7(3): 03000e55
Jianqiang Zhu 1,2Xinglong Xie 1,2,*Meizhi Sun 1,2Jun Kang 1,2[ ... ]Zunqi Lin 1,2
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai 201800, China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
We present a recent progress of the SG-II 5PW facility, which designed a multi-petawatt ultrashort pulse laser based on optical parametric chirped-pulse amplification (OPCPA). The prior two optical parametric amplifiers have been accomplished and chirped pulses with an energy of 49.7 J and a full-width-at-half-maximum (FWHM) spectrum bandwidth of 85 nm have been achieved. In the PW-scale optical parametric amplification (OPA), with the pump pulse that has an energy of 118 J from the second harmonic generation of the SG-II 7th beam, the pump-to-signal conversion efficiency is up to 41.9%, which to the best of our knowledge is the highest among all of the reported values for OPCPA systems. The compressed pulse is higher than 37 J in 21 fs (1.76 PW), and the focal spot is ${\sim}10~\unicode[STIX]{x03BC}\text{m}$ after the closed-loop corrections by the adaptive optics. Limited by the repetition of the pump laser, the SG-II 5PW facility operates one shot per hour. It has successfully been employed for high energy physics experiments.
conversion efficiency multi-petawatt optical parametric amplification proton acceleration ultrashort pulse. 
High Power Laser Science and Engineering
2018, 6(2): 02000e29
Author Affiliations
Abstract
1 Physics Department, Indian Institute of Technology Delhi, New Delhi 110016, India
2 Department of Physics, University of Maryland, College Park, MD 20742, USA
An analytical model for hole boring proton acceleration by a circularly-polarized CO2 laser pulse in a gas jet is developed. The plasma density profile near the density peak is taken to be rectangular, with inner region thickness l around a laser wavelength and density 10% above the critical, while the outside density is 10% below the critical. On the rear side, plasma density falls off rapidly to a small value. The laser suffers strong reflection from the central region and, at normalized amplitude a0≥1, creates a double layer. The space charge field of the double layer, moving with velocity vfz^, reflects up-stream protons to 2vf velocity, incurring momentum loss at a rate comparable to radiation pressure. Reflection occurs for vf≤ωp (zflm/mp)-1/2 , where m and mp are the electron and proton masses, zf is the distance traveled by the compressed electron layer and ωp is the plasma frequency. For Gaussian temporal profile of the laser and parabolic density profile of the upstream plasma, the proton energy distribution is narrowly peaked.
Laser-driven acceleration Laser-driven acceleration Radiation pressure proton acceleration Radiation pressure proton acceleration Relativistic plasmas Relativistic plasmas 
Matter and Radiation at Extremes
2017, 2(5): 256
作者单位
摘要
新疆大学 物理科学与技术学院, 乌鲁木齐 830046
为了研究激光辐射压驱动的运动电场中加速质子的相关问题, 对强激光与等离子体相互作用过程进行了理论分析, 并采用2维粒子模拟方法, 对理论分析结果进行了数值模拟验证。结果表明, 当超短超强激光脉冲与处在背景等离子体前方的薄固体平靶相互作用时, 在固体靶后部形成一个由电子层-离子层组成的双层结构, 在激光辐射压的不断推进下, 双层结构在背景等离子体里以一定速度传播形成一个运动电场; 在背景等离子体中的质子被这个运动电场捕获并能加速到很高的能量, 质子的最大能量达到20GeV。理论分析结果与2维粒子模拟结果符合得很好。
激光技术 质子加速 辐射压加速 粒子模拟方法 高能量质子束 laser technique proton acceleration radiation pressure acceleration particle-in-cell simulation scheme high-energy proton beam 
激光技术
2017, 41(2): 302
Author Affiliations
Abstract
1 Technical University of Crete, Lab of Matter Structure and Laser Physics, Chania, Crete, Greece
2 Institute of Electronic Structure and Laser FORTH, Heraklion, Greece
3 Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia
4 Applied Physics Division, Soreq NRC, Yavne 81800, Israel
5 Nuclear Fusion Institute, Polytechnique University of Madrid, ETSII, Madrid 28006, Spain
The application of laser pulses with psec or shorter duration enables nonthermal efficient ultrahigh acceleration of plasma blocks with homogeneous high ion energies exceeding ion current densities of 1012 A cm??2. The effects of ultrahigh acceleration of plasma blocks with high energy proton beams are proposed for muon production in a compact magnetic fusion device. The proposed new scheme consists of an ignition fusion spark by muon catalyzed fusion (mCF) in a small mirror-like configuration where low temperature D–T plasma is trapped for a duration of 1 ms. This initial fusion spark produces sufficient alpha heating in order to initiate the fusion process in the main device. The use of a multi-fluid global particle and energy balance code allows us to follow the temporal evolution of the reaction rate of the fusion process in the device. Recent progress on the ICAN and IZEST projects for high efficient high power and high repetition rate laser systems allows development of the proposed device for clean energy production. With the proposed approaches, experiments on fusion nuclear reactions and mCF process can be performed in magnetized plasmas in existing kJ=PW laser facilities as the GEKKO-LFEX, the PETAL and the ORION or in the near future laser facilities as the ELI-NP Romanian pillar.
alpha heating effect alpha heating effect high energy density physics high energy density physics laser plasmas interaction laser plasmas interaction laser proton acceleration high energy density phys laser proton acceleration high energy density phys muon catalyzed fusion muon catalyzed fusion ultra-intense ultra-intense ultra-short pulse laser interaction with matters ultra-short pulse laser interaction with matters 
High Power Laser Science and Engineering
2016, 4(4): 04000e42
作者单位
摘要
新疆大学 物理科学与技术学院, 乌鲁木齐 830046
研究了激光辐射压驱动的两级质子加速的相关问题。当超短超强激光脉冲与处在背景等离子体前方的薄固体平靶相互作用时, 在固体靶后部形成一个电子层-离子层组成的双层结构。在激光的不断推进下, 双层结构在背景等离子体里以一定速度传播, 可以看成运动在背景等离子体中的电场。这样, 在背景等离子体中的质子被这个运动电场捕获并能加速到很高的能量。通过二维PIC模拟方法和理论分析研究了质子加速的相关问题。研究结果表明, 被加速质子的最大能量达到20 GeV。
强激光 质子加速 辐射压加速 PIC模拟 高能质子束 intense laser proton acceleration radiation pressure acceleration particle-in-cell simulation scheme high-energy proton beam 
强激光与粒子束
2016, 28(11): 112003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!