激光与光电子学进展, 2013, 50 (11): 110005, 网络出版: 2013-10-20  

基于冷原子技术的导航传感器现状与发展 下载: 1418次

Current Status and Development of Navigation Sensors Based on Cold Atoms
作者单位
西安飞行自动控制研究所, 陕西 西安 710065
摘要
激光冷却原子样品以其探询时间长、能消除多普勒频移和碰撞引起的频移、与探测光场弱耦合等优点显著改善了原子光谱的精密测量能力,其多种优良特性也引起了导航领域研究者的极大兴趣。回顾了基于冷原子技术的导航传感器的发展历程,并跟踪了国际上的最新研究动态。将冷原子导航传感器根据其结构分为冷原子钟、冷原子干涉仪和原子芯片三个领域,并从物理效应、工作原理、性能参数、应用方向等多个方面分别进行了阐述。最后分析了冷原子导航传感器的发展前景,并指出高动态环境和系统的集成与封装将成为冷原子导航传感器实际应用面临的主要困难。
Abstract
The sample of laser cooled atoms significantly improves precision measurements of atom spectrum due to its advantages such as longer interrogation time, elimination of Doppler and collision-induced shifts, weak coupling to the interrogating fields and so on. The benefits of cold atoms have attracted large interest in navigation field. The development history of navigation sensors based on cold atom is reviewed and the recent research status of cold atom navigation sensors is introduced. The navigation sensors are classified into three types according to their different structures, and the physical effects, operation principles, performance parameters and application fields are described respectively. Finally, the development tendency is prospected. It is pointed out that the high-g dynamic environment and the integration and package of the system will be the main challenges for the practical application of cold atom navigation sensors.
参考文献

[1] M Boshier, D Berkeland, T R Govindan, et al.. Quantum Technology and Its Applications[R]. Los Alamos: Los Alamos National Laboratory, 2010. 8-10.

[2] A Clairon, C Salomon, S Guellati, et al.. Ramsey resonance in a Zacharias fountain[J]. Europhys Lett, 1991, 16(2): 165-170.

[3] M Kasevich, E Riis, S Chu, et al.. RF spectroscopy in an atomic fountain[J]. Phys Rev Lett, 1989, 63(6): 612-615.

[4] 翟造成, 杨佩红. 新型原子钟及其在我国的发展[J]. 激光与光电子学进展, 2009, 46(3): 21-31.

    Zhai Zaocheng, Yang Peihong. Novel atomic clock and its development in China[J]. Laser & Optoelectronics Progress, 2009, 46(3): 21-31.

[5] A Clairon, P Laurent, G Santarelli, et al.. A cesium fountain frequency standard: preliminary results[J]. IEEE Trans Instrumentation and Measurement, 1995, 44(2): 128-131.

[6] S A Diddams, J C Bergquist, S R Jefferts, et al.. Standards of time and frequency at the outset of 21st century[J]. Science, 2004, 306(5700): 1318-1324.

[7] Ch Salomon, N Dimarcq, M Abgrall, et al.. Cold atoms in space and atomic clocks: ACES[J]. Comptes Rendus De L Academie Des Sciences Serie Iv Physique Astrophysique, 2001, 2(9): 1313-1330.

[8] T P Heavner, L W Hollberg, S R Jefferts, et al.. Characterization of a cold cesium source for PARCS: primary atomic reference clock in space[J]. IEEE Trans Instrumentation and Measurement, 2001, 50(2): 500-502.

[9] H Schnatz, B Lipphardt, C Degenhardt, et al.. Optical frequency measurements using fs-comb generators[J]. IEEE Trans Instrumentation and Measurement, 2005, 54(2): 750-753.

[10] L Hollberg, C W Oates, G Wilpers, et al.. Optical frequency/wavelength references[J]. J Phys B, 2005, 38(9): S469-S495.

[11] H Katori. Spectroscopy of strontium atoms in the Lamb-Dicke confinement[C]// Proceedings of the 6th Symposium on Frequency Standards and Metrology, 2002. 323-330.

[12] M Takamoto, F L Hong, R Higashi, et al.. An optical lattice clock[J]. Nature, 2005, 435(7040): 321-324.

[13] A D Ludlow, T Zelevinsky, G K Campbell, et al.. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.

[14] P R Berman. Atom Interferometry[M]. San Diego: Academic Press, 1997.

[15] E J Post. Sagnac effect[J]. Rev Mod Phys, 1967, 39(2): 475-493.

[16] F Riehle, Th Kisters, A Witte, et al.. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer[J]. Phys Rev Lett, 1991, 67(2): 177-180.

[17] T L Gustavson, A Landrangin, M A Kasevich. Rotation sensing with dual atom-interferometer Sagnac gyroscope[J]. Classical Quantum Gravity, 2000, 17(12): 2385-2398.

[18] M A Kasevich. Atom Interferometry in an Atomic Fountain[D]. Stanford: Stanford University, 1992.

[19] A Peters, K Y Chung, S Chu. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 1999, 400(6747): 849-852.

[20] G M Tinoa, L Cacciapuotib, K Bongsc, et al.. Atom interferometers and optical atomic clocks: new quantum sensors for fundamental physics experiments in space[C]. Proceedings of the Third International Conference on Particle and Fundamental Physics in Space, 2006. 159-165.

[21] Committee on Universal Radio Frequency System for Special Operations Forces, Standing Committee on Research, Development, Acquisition Options for U.S. Special Operations Command, National Research Council. Toward a Universal Radio Frequency System for Special Operations Forces[M]. Washington: National Academies Press, 2009.

[22] D S Durfee, Y K Shaham, M A Kasevich. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Phys Rev Lett, 2006, 97(24): 240801.

[23] B Canuel, F Leduc, D Holleville, et al.. Six-axis inertial sensor using cold-atom interferometry[J]. Phys Rev Lett, 2006, 97(1): 010402.

[24] B Biedermann. Gravity Tests, Differential Accelerometry and Interleaved Clocks with Cold Atom Interferometers[D]. Stanford: Stanford University, 2007.

[25] K Takase. Precision Rotation Rate Measurements with a Mobile Atom Interferometer[D]. Stanford: Stanford University, 2008.

[26] T Müller, M Gilowski, M Zaiser, et al.. A compact dual atom interferometer gyroscope based on laser-cooled rubidium[J]. Eur Phys J D, 2009, 53(3): 273-281.

[27] A Gauguet, B Canuel, T Lévèque, et al.. Characterization and limits of a cold-atom Sagnac interferometer[J]. Phys Rev A, 2009, 80(6): 063604.

[28] R Folman, P Krüger, D Cassettari, et al.. Controlling cold atoms using nanofabricated surfaces: atom chips[J]. Phys Rev Lett, 2000, 84(20): 4749-4752.

[29] S Knappe, P D D Schwindt, V Shah, et al.. A chip-scale atomic clock based on 87Rb with improved frequency stability[J]. Opt Express, 2005, 13(4): 1249-1253.

[30] H Ott, F Fortagh, G Schlotterbeck, et al.. Bose-Einstein condensation in a surface microtrap[J]. Phys Rev Lett, 2001, 87(23): 230401.

[31] S R Segal. Progress Towards an Ultracold Atomic Sagnac Gyroscope[D]. Boulder: University of Colorado at Boulder, 2010.

[32] T Schumm, S Hofferberth, L M Andersson, et al.. Matter-wave interferometry in a double well on an atom chip[J]. Nature Physics, 2005, 57(1): 57-62.

[33] P Treutlein, P Hommelhoff, T Steinmetz, et al.. Coherence in microchip traps[J]. Phys Rev Lett, 2004, 92(20): 3005-3008.

[34] United States Air Force Chief Scientist (AF/ST). Report on Technology Horizons: a Vision for Air Force Science & Technology during 2010~2030[R]. United States Air Force, 2010. 79-90.

[35] G Stern, B Battelier, R Geiger, et al.. Light-pulse atom interferometry in microgravity[J]. Eur Phy J D, 2009, 53(3): 353-357.

[36] AOSense. Accelerometer for Space Applications Based on Light-Pulse Atom Interferometry[EB/OL]. (2011-09-08) [2013-02-02] https://ehb8.gsfc.nasa.gov/sbir/docs /public/recent_elections/SBIR_11_P1/SBIR_11_P1_115522/briefchart.pdf.

[37] L C Suriano. Robust Technology to Augment or Replace the US Reliance on the Global Positioning System[R]. Montgomery: Air War College, Air University, 2011. 11.

[38] DARPA. Precision Inertial Navigation Systems (PINS) [EB/OL]. (2010-12-30) [2013-02-02] http://www. darpa.mil/Our_Work/DSO/Programs/Precision_Inertial_Navigation_Systems_(PINS).aspx.

[39] 屈求智, 周子超, 万金银, 等. 拉曼喷泉原子钟[J]. 光学学报, 2008, 28(7): 1390-1394.

    Qu Qiuzhi, Zhou Zichao, Wan Jinyin, et al.. Raman atomic fountain clock[J]. Acta Optica Sinica, 2008, 28(7): 1390-1394.

[40] 李润兵, 王谨, 詹明生. 新一代惯性导航技术: 冷原子陀螺仪[J]. 全球定位系统, 2010, 35(4): 1-5.

    Li Runbing, Wang Jin, Zhan Mingsheng. New generation inertial navigation technology: cold atom gyroscope[J]. Gnss World of China, 2010, 35(4): 1-5.

[41] 朱常兴, 冯焱颖, 叶雄英, 等. 利用原子干涉仪的相位调制进行绝对转动测量[J]. 物理学报, 2008, 57(2): 808-815.

    Zhu Changxing, Feng Yanying, Ye Xiongying, et al.. The absolute rotation measurement of atom interferometer by phase modulation[J]. Acta Physica Sinica, 2008, 57(2): 808-815.

[42] 王兆英, 吴珍菁, 林强. 原子干涉条纹与重力加速度测量精度的关系[J]. 光学学报, 2009, 29(12): 3541-3544.

    Wang Zhaoying, Wu Zhenjing, Lin Qiang. The relation between the atom interference fringe and the measurement precision of gravity[J]. Acta Optica Sinica, 2009, 29(12): 3541-3544.

[43] 李强, 云恩学, 顾思洪. 用四能级系统研究相干布居囚禁态[J]. 中国激光, 2009, 36(2): 351-355.

    Li Qiang, Yun Enxue, Gu Sihong. Study of coherent population trapping state with a four-level system[J]. Chinese J Lasers, 2009, 36(2): 351-355.

[44] 李乾勇, 卢佳佳, 胡海燕, 等. 基于铯原子D2线光抽运光谱的半导体激光器偏频锁定[J]. 中国激光, 2010, 37(12): 2969-2974.

    Li Qianyong, Lu Jiajia, Hu Haiyan, et al.. Laser frequency offset locking with optical pumping spectrum in D2 line of cesium[J]. Chinese J Lasers, 2010, 37(12): 2969-2974.

[45] J C Fang, J Qin. Advances in atomic gyroscopes: a view from inertial navigation applications[J]. Sensors, 2012, 12(5): 6331-6346.

[46] 李俊, 雷兴, 李攀, 等. 干涉型原子陀螺仪研究进展与应用[J]. 电讯技术, 2012, 52(7): 1216-1221.

    Li Jun, Lei Xing, Li Pan, et al.. Research progress and application of interferometric atom gyroscope[J]. Telecommunication Engineering, 2012, 52(7): 1216-1221.

李攀, 李俊, 刘元正, 雷兴, 王继良. 基于冷原子技术的导航传感器现状与发展[J]. 激光与光电子学进展, 2013, 50(11): 110005. Li Pan, Li Jun, Liu Yuanzheng, Lei Xing, Wang Jiliang. Current Status and Development of Navigation Sensors Based on Cold Atoms[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!