作者单位
摘要
1 东北林业大学计算机与控制工程学院,黑龙江 哈尔滨 150000
2 东北林业大学机电工程学院,黑龙江 哈尔滨 150000
光谱共焦显微技术结合了共焦显微镜的高空间分辨率和光谱分析的高波长分辨率,凭借精度高、适用性强、无损检测等特性,广泛应用于工业生产、生物医疗和半导体芯片等领域。首先介绍点光谱共焦系统的原理,指出点光谱共焦检测效率低的缺点。其次,针对光谱共焦显微技术的关键性能指标改善,阐述了在光源、色散物镜和光谱信号检测等方面所取得的主要成果,并对各类光源进行定性对比。随后展示光谱共焦显微技术的扫描方法,梳理了相关研究进展,并总结了相关方法的优点和缺点。最后,展望光谱共焦显微技术未来的发展趋势。
光谱共焦显微技术 精密测量 宽光谱光源 色散物镜 扫描成像 
激光与光电子学进展
2024, 61(6): 0618024
作者单位
摘要
北京工业大学 材料与制造学部 北京市精密测控技术与仪器工程技术研究中心, 北京100124
测头对准误差对齿轮测量中心ZC蜗杆齿廓偏差测量结果的影响较大,需要建立测头对准误差修正方法。基于ZC1蜗杆齿面方程,建立了蜗杆轴向齿廓测量误差模型,修正得到轴截面上齿廓测量点的轴向坐标,再依据精度标准评定得到蜗杆齿廓偏差,并分析了蜗杆的不同头数、模数和分度圆直径对蜗杆轴向齿廓测量误差的影响规律。在齿轮测量中心上开展了蜗杆轴截面齿廓测量实验,测头对准误差对齿廓形状偏差的影响较小;测头对准误差修正前后齿廓测量总偏差的最大差异由1.2 μm降为0.2 μm;齿廓形状测量偏差的最大差异由0.5 μm降为0.3 μm;齿廓倾斜测量偏差的最大差异由2.5 μm降为0.4 μm。该方法可有效减小齿轮测量中心测头对准误差对蜗杆轴截面齿廓偏差测量的影响。
精密测量 ZC蜗杆 测头对准 误差修正 齿轮测量中心 precision measurement ZC worm probe alignment error correction gear measurement center 
光学 精密工程
2024, 32(1): 53
作者单位
摘要
北京理工大学光电学院,复杂环境智能感测技术工信部重点实验室,北京 100081
球面光学元件的曲率半径、厚度、折射率、焦距和面形等多参数的高精度检测是光学元件超精密制造的迫切需求,但现有测量方法受层析定焦能力、抗散射能力及抗环境扰动能力的制约,难以实现上述参数的高精度共基准测量。为此,本团队提出了高层析、高分辨、抗散射和抗干扰的激光差动共焦多参数高精度共基准测量方法,并进一步与菲索干涉光路融合,实现了球面元件多参数的高精度、共基准、高效率测量。本文系统地介绍了所提出的激光差动共焦干涉元件参数系列测量方法及其仪器化研究进展,分析了目前存在的问题,展望了未来的发展趋势。
测量 差动共焦干涉 球面光学元件 高精度测量 层析定焦 共基准测量 
光学学报
2023, 43(15): 1500003
刘清权 1,3关学昱 1,3,4崔恒毅 1,3,4王少伟 1,3,4,*陆卫 1,2,3,4,**
作者单位
摘要
1 中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083
2 上海科技大学物质科学与技术学院,上海 201210
3 上海节能镀膜玻璃工程技术研究中心,上海 200083
4 中国科学院大学,北京 100049
法布里-珀罗(F-P)微腔作为基础的光学谐振器,因其结构设计方法成熟、品质因子高等特性,在近现代光学领域中具有举足轻重的地位。近年来,随着微纳加工技术的不断成熟,F-P微腔进入了一个新的发展阶段,其结构展现出集成化、多样化、功能定制化的特点,其应用领域也得到进一步拓展。本文总结了近20年来F-P微腔在光场调控领域的研究进展,重点介绍了基于F-P微腔的分光结构及光谱探测应用、F-P微腔中光子与低维材料相互作用的研究,以及F-P微腔在参数精密测量、生物检测、多维光场调控等方面的潜在应用,并对未来F-P微腔的发展及新的应用前景进行了展望。
光学器件 法布里-珀罗微腔 微型光谱仪 低维材料 精密测量 光场调控 耦合 
光学学报
2023, 43(16): 1623009
作者单位
摘要
1 西安工业大学 陕西省薄膜技术与光学检测重点实验室,陕西西安7002
2 重庆川仪自动化股份有限公司,重庆40070
3 中检西部检测有限公司,陕西西安71002
为了对红宝石球直径进行非接触式、高精度测量,本文提出了一种复合式二次边缘检测法。首先,对拍摄到的红宝石球图像进行预处理后使用自适应阈值的Canny边缘检测算法对红宝石球图像进行一次边缘检测;其次,采用基于像素加权平均的图像融合算法对红宝石球二值化图像与边缘检测图像进行融合,对融合后的图像进行边缘提取,选择三次样条插值法对边缘图像进行插值,通过曲线拟合获得图像边缘的亚像素坐标,根据坐标进行圆拟合,结合标定得到检测结果,完成复合式二次边缘检测,从而实现对红宝石球直径的高精度测量。实验结果表明:对6 mm的红宝石球直径测量,测量精度可达1.5 μm,定位精度不超过0.1个像素,满足企业测量要求,为后续实现工业自动化检测提供了较好的技术支持。
复合式二次边缘检测 高精度测量 图像融合 三次样条插值 曲线拟合 compound secondary edge detection high precision measurement image fusion cubic spline interpolation quadratic curve fitting 
光学 精密工程
2023, 31(12): 1741
作者单位
摘要
1 中国科学院 空间应用工程与技术中心 太空应用重点实验室,北京00094
2 中国科学院 空天信息创新研究院 计算光学成像技术实验室,北京100094
3 中国科学院大学,北京100094
鉴于通过测量高精度的位移数据可以获得高精度的微重力加速度数据,进而服务于多种空间科学载荷的研究任务,提出了一种基于三组正交对称角锥棱镜的双频光路,利用外差干涉测量技术实现空间惯性质量块的六自由度位移和角度测量的方法。通过光路矢量分析建立了实际角锥棱镜的光路模型,考虑质量块在运动过程中带来的附加光程差,推导了各测量光路的光程变化与质量块六自由度位姿的函数关系。为了克服小角度近似法精度不高的缺陷,提出了利用数值计算法解耦姿态角进而获得相对位移的位姿解算算法。利用空间在轨位姿数据和随机位姿数据进行系统仿真。仿真结果表明:数值计算的位移误差小于0.02 fm,且该方法的计算误差不会随着飞行器振动的增大而变大,算法具有更高的精度和更好的适应性。最后,分析了系统的误差来源,在保证角度安装误差小于5 mrad、距离安装误差小于10 μm且平行度小于2 mrad时,系统的姿态角测量误差小于0.017°,位移测量误差小于10 nm。本文提出的六自由度测量及解算方法也可以服务于其他精密加工与检测领域。
精密测量 外差干涉测量 双频激光干涉 微重力 惯性传感 六自由度 precision measurement heterodyne interference measurement dual frequency laser interference microgravity inertial sensing six-degree-of-freedom 
光学 精密工程
2023, 31(11): 1593
作者单位
摘要
复旦大学上海超精密光学制造工程技术研究中心,信息科学与工程学院,上海 200438
光学自由曲面是现代精密光学领域的重大变革,因其优异的光学、力学性能而有望进一步推进光学系统实现微型化、轻量化、集成化。随着光学自由曲面的面形复杂度不断提升,光学自由曲面的检测技术已成为制约其制造水平的关键因素。回顾了近年来光学自由曲面测量与误差评估的关键技术,包括点线式扫描、全口径光学测量方法以及面形误差评估方法,结合各种技术的优缺点,展望了该领域未来发展的新趋势,并介绍了一种结合多传感器实现共体自由曲面的测量及误差评估的新方法。
光学设计 光学自由曲面 精密测量 面形测量 误差评估 误差参数 
光学学报
2023, 43(8): 0822013
作者单位
摘要
1 国家自然科学基金委员会工程与材料科学学部,北京 100083
2 华中科技大学机械科学与工程学院,湖北 武汉 430074
3 天津大学精密仪器与光电子工程学院,天津 300392
4 太原科技大学机械工程学院,山西 太原 030024
机械测试理论与技术是获取机械物理信息的主要途径,是推动工业生产和制造技术进步的“倍增器”。随着我国从“资本密集型、劳动密集型”产业逐步向“知识密集型”产业升级,以集成电路、航空航天、高速轨道交通、新能源汽车为代表的战略性新兴产业与高技术制造业正成为未来十年我国制造业升级的重点领域。如何完整而精确地获取高性能装备运行过程中的服役状态以及如何实时而全面地获取产品制造过程中的形性参数,是保证制造装备与制造过程实现“高性能”、“高效率”的关键所在。开展了科学基金资助情况统计和文献分析,从精密测量、纳米测量与量子测量3个维度综合分析了本领域的代表性进展、研究热点与发展趋势,总结了面向高性能制造的机械测试重要理论、核心方法与关键技术进展,探讨了所面临的关键挑战,凝练了未来5~10年的重大科学问题。
机械测试理论与技术 先进制造 精密测量 纳米测量 量子测量 
激光与光电子学进展
2023, 60(3): 0312002
陈善勇 1,2薛帅 1,2熊玉朋 1,2彭小强 1,2戴一帆 1,2,*
作者单位
摘要
1 国防科技大学智能科学学院装备综合保障技术重点实验室,湖南 长沙 410073
2 超精密加工技术湖南省重点实验室,湖南 长沙 410073
超精密测量是光学制造的前提。高精度的光学面形测量仍然遵循零位检验原则,计算机生成全息图(CGH)是自由曲面等复杂面形零位检验所必需的补偿器。为此,面向制造过程,重点论述CGH补偿检验原理及其衍射级次的鬼像干扰、投影畸变校正、测量不确定度与绝对检验问题,探讨CGH补偿检验的局限与应对方法。针对制造过程中产生的动态演变局部大误差的测量难题,论述子孔径拼接测量、自适应补偿干涉测量方法,探讨加工原位干涉测量进展。最后,从超高精度测量与溯源、混合光学零件的宏微跨尺度测量、自主可控面形测量仪器及其原位集成三个方面对光学面形测量技术发展进行展望。
测量 超精密测量 零位检验 光学面形计量 光学自由曲面 计算机生成全息图 
激光与光电子学进展
2023, 60(3): 0312011
作者单位
摘要
西北工业大学机电学院,陕西 西安 710072
新一代飞机向着大型、重载、长寿等方向发展,对其装配质量、精度等提出更高的要求。装配中几何尺寸、物理损伤等的高精度测量是调控飞机装配工艺、保证装配指标的基础和关键,对飞机服役性能有着重要的影响。本文围绕新一代飞机结构尺寸大幅增加、承力结构复材化发展下的需求,论述了大型飞机装配中高精度测量技术的研究进展,具体从大空间点位高精度测量方法、大型结构外形高精度测量方法、复合材料结构装配缺陷高精度检测技术等方面对国内外理论研究和技术应用进行了梳理和总结,并指明相关技术的未来发展趋势和前景。
仪器,测量与计量 高精度测量 飞机装配 大空间场构建 装配外形测量 缺陷检测 
激光与光电子学进展
2023, 60(3): 0312004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!