光学 精密工程, 2020, 28 (7): 1494, 网络出版: 2020-11-02   

可见光通信中GaN-LED PN结面积对调制带宽的影响机理

Influence mechanism of GaN-LEDs PN junction area on modulation bandwidth in visible light communication
作者单位
1 华南理工大学 广州学院 电子信息工程学院, 广东 广州 510800
2 中山大学 电子信息与工程学院, 广东 广州 510275
引用该论文

周政, 缪文南, 李亚, 龙晓燕, 李健. 可见光通信中GaN-LED PN结面积对调制带宽的影响机理[J]. 光学 精密工程, 2020, 28(7): 1494.

ZHOU Zheng, MIAO Wen-nan, LI Ya, LONG Xiao-yan, LI Jian. Influence mechanism of GaN-LEDs PN junction area on modulation bandwidth in visible light communication[J]. Optics and Precision Engineering, 2020, 28(7): 1494.

参考文献

[1] 金鹏, 喻春雨, 周奇峰, 等. LED在道路照明中的光效优势 [J]. 光学 精密工程, 2011, 19(1): 51-55.

    JIN P, YU CH Y, ZHOU Q F, et al.. Superior application of LED to street light [J]. Opt. Precision Eng., 2011, 19(1): 51-55. (in Chinese)

[2] BALEJA R, SUMPICH J, BOS P, et al.. Comparison of LED properties, compact fluorescent bulbs and bulbs in residential areas [C]. 16th Int.Scientific Conf. on Electric Power Engineering (EPE), 2015: 566-571.

[3] WANG C X, HAIDER F, GAO X Q, et al.. Cellular architecture and key technologies for 5G wireless communication networks [J]. IEEE Commun. Mag., 2014, 52(2): 122-130.

[4] HUANG X X, CHEN S Y, WANG Z X, et al.. 2.0-Gb/s visible light link based on adaptive bit allocation OFDM of a single phosphorescent white LED [J]. IEEE Photonics J., 2015, 7(5): 1-8.

[5] MCKENDRY J J D, MASSOUBRE D, ZHANG S L, et al.. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array [J]. J. Light.Technol., 2012, 30(1): 61-67.

[6] LIAO C L, CHANG Y F, HO C L, et al.. High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer [J]. IEEE Electron Device Lett., 2013, 34(5): 611-613.

[7] WUN J M, LIN C W, CHEN W, et al.. GaN-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication [J]. IEEE Photonics J., 2012, 4(5): 1520-1529.

[8] GUINA M, ORSILA S, DUMITRESCU M, et al.. Light-emitting diode emitting at 650 nm with 200-MHz small-signal modulation bandwidth [J]. IEEE Photonics Technol. Lett., 2000, 12(7): 786-788.

[9] SHI J W, CHI K L, WUN J M, et al.. Ⅲ-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication [J]. IEEE Electron Device Lett., 2016, 37(7): 894-897.

[10] ZHOU Z, YAN B, TENG D D, et al.. Improving the -3 dB bandwidth of medium power GaN-based LEDs through periodic micro via-holes for visible light communications [J]. Optics Communications, 2017, 392: 175-179.

[11] ZHOU Z, YAN B, MA X J, et al.. GaN-based mid-power flip-chip LED with high -3 dB bandwidth for visible light communications [J]. Applied Optics, 2018, 57: 2273-2279.

[12] JIN S X, SHAKYA J, LIN J Y, et al.. Size dependence of Ⅲ-nitride microdisk light-emitting diode characteristics [J]. Appl. Phys. Lett., 2001, 78(22): 3532-3534.

[13] PIPREK J. Efficiency droop in nitride-based light-emitting diodes [J]. Phys. Status Solidi A, 2010, 207(10): 2217-2225.

[14] MEYAARD D S, SHAN Q F, CHO J, et al..Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities [J]. Appl. Phys. Lett., 2012, 100(8): 081106.

[15] 迟楠. LED可见光通信技术 [D]. 北京: 清华大学出版社, 2014.

    CHI N. LED Visible Light Communication Technologies [D]. Beijing: Tsinghua University Press, 2014. (in Chinese)

[16] SAUL R H. Recent advances in the performance and reliability of InGaAsP LEDs for lightwave communication systems [J]. IEEE T. Electron. Dev., 1983, 30(4): 285-295.

[17] LAU E K, LAKHANI A, TUCKER R S, et al.. Enhanced modulation bandwidth of nanocavity light emitting devices [J]. Optics Express, 2009, 17(10): 7790-7799.

[18] GREEN R P, MCKENDRY J J D, MASSOUBRE D, et al.. Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes [J]. Appl. Phys. Lett., 2013, 102(9): 091103.

[19] CHO J, MAO A, KIM J K, et al.. Analysis of reverse tunnelling current in GaInN light-emitting diodes [J]. Electron. Lett., 2010, 46(2): 156-157.

[20] MURALIDHARAN S. Light Emitting Diode Designs and Modulation Schemes for Dual Illumination and Visible Light Communication Applications [D]. Ph. D thesis, Troy, NY, 2013.

[21] RAJBHANDARI S, MCKENDRY J J D, HERRNSDORF J, et al.. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications [J]. Semicond. Sci. Technol., 2017, 32(2): 023001.

[22] RASHIDI A, NAMI M, MONAVARIAN M, et al.. Differential carrier lifetime and transport effects in electrically injected Ⅲ-nitride light-emitting diodes [J]. Journal of Applied Physics, 2017, 122(3): 035706.

[23] CHO J, et al.. Capacitance measurements of PN junctions: Depletion layer and diffusion capacitance contributions [J]. Eur. J. Phys., 1993, 14: 86-89.

周政, 缪文南, 李亚, 龙晓燕, 李健. 可见光通信中GaN-LED PN结面积对调制带宽的影响机理[J]. 光学 精密工程, 2020, 28(7): 1494. ZHOU Zheng, MIAO Wen-nan, LI Ya, LONG Xiao-yan, LI Jian. Influence mechanism of GaN-LEDs PN junction area on modulation bandwidth in visible light communication[J]. Optics and Precision Engineering, 2020, 28(7): 1494.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!