光学学报, 2008, 28 (11): 2187, 网络出版: 2008-11-17   

第一性原理研究霰石的电子结构和光学性质

First-Principles Study on Electronic Structure and Optical Properties of Aragonite (CaCO3)
作者单位
咸宁学院电子与信息工程学院, 湖北 咸宁 437005
摘要
采用线性缀加平面波方法, 研究了霰石的主要成分CaCO3的电子结构和线性光学特性, 结果发现, 霰石的主要成分CaCO3是一种具有直接带隙 4.29119 eV 的化合物, 在这种化合物中, C原子的2s态和O原子的2s态杂化形成了阴离子[CO3]2-, 并解释了介电函数虚部主要峰的形成原因, 同时计算和研究了霰石的吸收系数、能量损失系数、折射系数和湮灭系数等光学性质。
Abstract
With the help of ab initio full-potential linearized augmented plane wave method, the calculations of the electronic structure and linear optical properties are carried out for CaCO3. It is found that the CaCO3 compound has a direct band gap of 4.29119 eV. The hybridization of C atomic 2s and O atomic 2s orbitals forms the anion groups [CO3]2-. Furthermore, the different origin of the mean peaks of imaginary part of dielectric function of CaCO3 has been discussed. The absorption coefficient, electron energy loss coefficient, refractive index, and extinction coefficient of CaCO3 are studied.
参考文献

[1] F. D. Bloss. An Introduction to the Methods of Optical Crystallography[M]. New York: Holt, Rinehart and Winston, 1961. 35~39

[2] W. A. Deer, R. A. Howie, J. Zussman. An Introduction to the Rock-Forming Minerals[M]. New York: Wiley, 1966. 127~132

[3] . Ditchfield. Self consistent perturbation theory of diamagnetism. I. gauge invariant LCAO method for NMR chemical shifts[J]. Mol. Phys., 1974, 27: 789-807.

[4] Bragg W L. The structure of aragonite[C]. Proc. Roy. Soc., London A, 1924, l05(729): 16~39

[5] . Villiers. Crystal structures of aragonite, strontianite and witherite[J]. Amer. Min., 1971, 56: 758-767.

[6] . Negro, L. Ungaretti. Refinement of the crystal structure of aragonite[J]. Amer. Min., 1971, 56: 768-772.

[7] . Dickens, J. S. Bowen. Refinement of the crystal structure of the aragonite phase of CaCO3[J]. J. Res. Nat. Stand. A. Phys. Chem. A, 1971, 75: 27-32.

[8] . Isshiki, T. Irifune, K. Hirose et al.. Stability of magnesite and its high-pressure form in the lowermost mantle[J]. Nature, 2004, 427: 60-63.

[9] . V. Skorodumova, A. B. Belonoshko, L. Huang et al.. Stability of the MgCO3 structures under lower mantle conditions[J]. Am. Mineral, 2005, 90: 1008-1011.

[10] . R. Oganov, C. W. Glass, S. Ono. High-pressure phases of CaCO3: crystal structure prediction and experiment[J]. Earth Planet Sci. Lett., 2006, 241: 95-103.

[11] . Ono, T. Kikegawa, Y. Ohishi et al.. Post-aragonite phase transformation in CaCO3 at 40 GPa[J]. Am. Mineral., 2005, 90: 667-671.

[12] . Shimono, T. Takamura, M. Nishino et al.. Fluorescence properties of firing scallop shell[J]. Soc. Jnp., 2004, 112: 184-187.

[13] S. K. Medeiros, E. L. Albuquerque, J. F. F. Maia et al.. Structural, electronic, and optical properties of CaCO3 aragonite[J]. Chem. Phys. Lett., 2006, 430(4~6): 293~296

[14] . M. Hofmeister, E. Keppel, A. K. Speck. Absorption and reflection infrared spectra of MgO and other diatomic compounds[J]. Mon. Not. R. Astron. Soc., 2003, 345: 16-38.

[15] P. Blaha, K. Schwarz, G. K. H. Madsen et al.. WIEN2K, Vienna University of Technology, 2002, improved and updated UNIX version of the original copyrighted WIENCODE, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey. Comput. Phys. Commun., 1990, 59: 399

[16] . Inomata, T. Nakamura, T. Suemasu et al.. Epital growth of growth of semiconducting BaSi2 thin films on Si(111) substrates by reactive deposition epitaxy[J]. Jpn. J. Appl. Phys., 2004, 43: 4155-4160.

[17] D. Jarosch, G. Heger. TMPM Tschermaks Min Petr Mitt[M]. 1986, 35: 127~131

[18] W. D. Lynch, Hunter. in: E. D. Palik. Handbook of Opticals Constants of Solids[M]. New York: Academic Press, 1985. 350

[19] . Saha, T. P. Sinha. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J]. Phys. Rev. B, 2000, 62: 8828-8834.

[20] S. K. Medeiros, E. L. Albuquerque, J. F. F. Maia et al.. Structural, electronic, and optical properties of CaCO3 aragonite[J]. Chem. Phys. Lett., 2006, 430(4~6): 293~296

[21] . O. Jones, O. Gunnarsson. The density functional formalism,its applications and prospects[J]. Pre. Mod. Phys., 1989, 61: 689-693.

[22] . X. Wang, W. L. Zhong, C. L. Wang et al.. First principles study on the ferroelectricity of the perovskite ABO3 ferroelectrics[J]. Chin. Phys., 2002, 11: 714-06.

[23] . J. Jin, Z. Y. Li, J. B. Lin. Electronic structures and magnetism of nanowires on Cu(001) and Ag(001): A first-principles study[J]. Chin. Phys., 2007, 16: 506-05.

[24] . N掺杂锐钛矿TiO2光学性能的第一性原理研究[J]. 物理学报, 2007, 56(3): 1585-1589.

    . P. Peng, L. Xu, J. W. Yin. First-principles study the optical properties of anatase TiO2 by N-doping[J]. Acta Physica Sinica, 2007, 56(3): 1585-1589.

[25] . Z. Cheng, Z. Cheng, B. Xu. Electronic structure and optical properties of semiconducting orthorhombic BaSi2[J]. Chin. Phys. Lett., 2007, 9: 2646-2649.

[26] 张富春,邓周虎,阎军锋 等. ZnO电子结构与光学性质的第一性原理计算[J]. 光学学报, 2006, 26(8): 1203~1209

    Zhang Fuchun, Deng Zhouhu, Yan Junfeng et al.. First-principles calculation of electronic structure and optical properties of ZnO[J]. Acta Optica Sinica, 2006, 26(8): 1203~1209

[27] 肖奇, 邱冠周, 覃文庆 等. FeS2(pyrite)电子结构与光学性质的密度泛函计算[J]. 光学学报, 2002, 22(12): 1501~1506

    Xiao Qi, Qiu guanzhou, Tan Wenqing et al.. Density functional calculation of electronic structure and optical properties of FeS2(pyrite)[J]. Acta Optica Sinica, 2002, 22(12): 1501~1506

程正则. 第一性原理研究霰石的电子结构和光学性质[J]. 光学学报, 2008, 28(11): 2187. Cheng Zhengze. First-Principles Study on Electronic Structure and Optical Properties of Aragonite (CaCO3)[J]. Acta Optica Sinica, 2008, 28(11): 2187.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!