红外与激光工程, 2016, 45 (11): 1105006, 网络出版: 2017-01-20  

红外波长的随机激光器设计及FDTD软件特性验证

Design of random laser and feature verification of FDTD software with the infrared wavelengths
作者单位
1 吉林建筑大学 计算机科学与工程学院, 吉林 长春 130033
2 中国科学院东北地理与农业生态研究所, 吉林 长春 130033
摘要
深入研究了随机激光等效腔的局域化特性, 引入了外部光反馈下激光器的理论分析速率方程, 设计了磁旋光晶体的光隔离器件实现随机激光器的改进。采用的Nd:YAG激光器的实验结果验证了改进激光器可以降低散射损耗, 实现紫外激光的方向性输出。 FDTD仿真结果进一步表明波导的TE模的光增益近似是平面波导的两倍; 信号和泵浦强度的耦合在改进波导结构有了明显改进; 输出功率结果证实了结构降低随机激光器的散射损耗。研究结果对于随机激光的应用具有明显的参考价值。
Abstract
An in-depth study of the localization properties of a random laser cavity is equivalent to the introduction of the theoretical analysis rate equation under external optical feedback lasers designed for magnetic optical crystal isolation devices to achieve improved random lasers. Using Nd:YAG laser, experimental results demonstrate that improved laser scattering loss can be reduced to achieve directional UV laser output. Finite-difference time-domain simulation results further show that the TE mode waveguide optical gain is approximately twice the planar waveguide, the coupled signal and pump intensity in improving the guide structure is significantly improved, and the output power results confirm the structure to reduce random laser scattering losses. Results of the application of random laser have an obvious reference value.
参考文献

[1] Meng X, Fujita K, Murai S, et al. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles[J]. Physical Review A, 2009, 79(5): 1744-1747.

[2] Jonathan Andreasen, Nicolas Bachelard, Shivakiran B N, et al. Partially pumped random lasers[J]. International Journal of Modern Physics B, 2014, 28(5): 208-210.

[3] Leonetti Marco, Conti Claudio, Lopez Cefe. The mode-locking transition of random lasers[J]. Nature Photonics, 2013, 5(10): 615-617.

[4] Zhu Jun, Li Zhiquan, Qin Liuli. Cavity physical properties of SPP propagation in the MIM structure[J]. Infrared and Laser Engineering, 2015, 42(3): 852-856.

[5] Oleg Zaitsev, Lev Deych. Recent developments in the theory of multimode random lasers[J]. Journal of Optics, 2009, 12(2) 150-152.

[6] Hutchings M, O′Driscoll I, Smowton P M, et al. Fermi-dirac and random carrier distributions in quantum dot lasers[J]. Applied Physics Letters, 2014, 104(3): 031103.

[7] Zhu Jun, Qin Liuli, Song Shuxiang, et al. Design of a surface plasmon resonance sensor based on grating connection[J]. Photonic Sensors, 2015, 5(2): 159-165.

[8] Hoefner M, Wuensche H, Henneberger F. A random laser as a dynamical network[J]. New Journal of Physics, 2014, 16(3): 245-248.

[9] Zhu Jun, Qin Liuli, Song Shuxiang. Surface plasmon resonance demodulation by optical ring-down cavity technology[J]. Optik-International Journal for Light and Electron Optics, 2015, 4026(3): 201.

[10] Andreasen J, Cao H. Spectral behavior of partially pumped weakly scattering random lasers[J]. Optics Express, 2011, 19(4): 3418-3433.

[11] Shen Z, Wu L, Zhu S, et al. Random lasing action in a polydimethylsiloxane wrinkle induced disordered structure[J]. Applied Physics Letters, 2014, 105(2): 021106.

[12] Ye L, Liu B, Zhao C, et al. The electrically and magnetically controllable random laser from dye-doped liquid crystals[J]. Journal of Applied Physics, 2014, 116(5): 053103.

[13] Leonetti M, Conti, C, Lopez C. Tunable degree of localization in random lasers with controlled interaction[J]. Applied Physics Letters, 2012, 101(5): 051104.

[14] Geng J, Wang Q, Lee Y, et al. Development of eye-safe fiber lasers near 2 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 150-160.

[15] Feng L, Li P, Zhang M, et al. Transition linewidth of cross correlations in random intensity fluctuations in electromagnetically induced transparency[J]. Physical Review A, 2014, 89(1): 267-274.

[16] Kr 覿mmer Sarah, Vannahme Christoph, Smith Cameron L, et al. Random-cavity lasing from electrospun polymer fiber networks[J]. Advanced Materials, 2014, 26(48): 8096-8100.

张伟杰, 宋开山. 红外波长的随机激光器设计及FDTD软件特性验证[J]. 红外与激光工程, 2016, 45(11): 1105006. Zhang Weijie, Song Kaishan. Design of random laser and feature verification of FDTD software with the infrared wavelengths[J]. Infrared and Laser Engineering, 2016, 45(11): 1105006.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!