Author Affiliations
Abstract
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Opto-electronics Engineering, Anhui University, Hefei 230601, China
2 School of Instrument Science and Opto-electronics Engineering, Laboratory of Optical Fibers and Micro-nano Photonics, Hefei University of Technology, Hefei 230009, China
3 School of Opto-electronic Engineering, Zaozhuang University, Zaozhuang 277160, China
Random lasers are a type of lasers that lack typical resonator structures, offering benefits such as easy integration, low cost, and low spatial coherence. These features make them popular for speckle-free imaging and random number generation. However, due to their high threshold and phase instability, the production of picosecond random lasers has still been a challenge. In this work, we have developed three dyes incorporating polymer optical fibers doped with various scattering nanoparticles to produce short-pulsed random fiber lasers. Notably, stable picosecond random laser emission lasting 600 ps is observed at a low pump energy of 50 µJ, indicating the gain-switching mechanism. Population inversion and gain undergo an abrupt surge as the intensity of the continuously pumped light nears the threshold level. When the intensity of the continuously pumped light reaches a specific value, the number of inversion populations in the “scattering cavity” surpasses the threshold rapidly. Simulation results based on a model that considers power-dependent gain saturation confirmed the above phenomenon. This research helps expand the understanding of the dynamics behind random medium-stimulated emission in random lasers and opens up possibilities for mode locking in these systems.
random laser polymer optical fiber gain-switched laser picosecond pulse 
Chinese Optics Letters
2024, 22(4): 040603
作者单位
摘要
沈阳理工大学 理学院,辽宁 沈阳 110159
研究了向列相液晶激光器件侧面激光辐射谱,并深入分析了激光辐射机制。分别制备了传统液晶盒和引入SU-8光栅结构的两种器件,并注入向列相液晶TEB30A和激光染料PM597的混合物。利用Nd:YAG固体脉冲激光器倍频出的532 nm激光作为泵浦源正面入射器件,侧面探测激光辐射谱。在传统液晶盒器件侧面,测得 575~600 nm范围的随机激光辐射谱。而具有周期100 μm和8 μm 的SU-8光栅结构器件侧面,获得了多波长激光辐射谱。随着泵浦能量增大,最高强度激光辐射峰波长位置出现在583~585 nm和588~592 nm附近,FWHM约0.3 nm。基于光波导理论结合器件结构分析得出,在传统液晶盒中引入SU-8光栅结构增强了液晶器件的光波导效应,是获得多波长激光辐射谱的主要原因。
向列相液晶 SU-8光栅 多波长激光 随机激光 nematic liquid crystal SU-8 grating multi-wavelength laser random laser 
红外与激光工程
2023, 52(2): 20220159
Author Affiliations
Abstract
Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
The random fiber laser (RFL) has been an excellent platform for exploring novel optical dynamics and developing new functional optoelectronic devices. However, it is challenging for RFLs to regulate their emission into regular narrow pulses due to their intrinsic randomness. Here, through engineering the laser configuration (cavity Q value, gain distribution and nonlinearity), we demonstrate that narrow (~2.5 ns) pulses with record peak power as high as 64.3 kW are achieved from a self-Q-switched random ytterbium fiber laser. Based on high intracavity intensity and efficient interplay of multiple nonlinear processes (stimulated Brillouin scattering, stimulated Raman scattering and four-wave mixing), an over-one-octave visible-near-infrared (NIR) Raman-frequency comb is generated from single-mode silica fibers for the first time. After spectrally filtering the Raman peaks, wavelength-tunable pulses with durations of several hundreds of picoseconds are obtained. Such a high-peak-power random Q-switched fiber laser and wide frequency comb in the visible-NIR region can find applications in diverse areas, such as spectroscopy, biomedical imaging and quantum information.
high peak power Q-switched fiber laser Raman-frequency comb random laser visible-near-infrared 
High Power Laser Science and Engineering
2023, 11(1): 01000e11
作者单位
摘要
1 广东工业大学 信息工程学院,广州 510006
2 广东省信息光子技术重点实验室,广州 510006
3 中国计量大学 光学与电子科技学院,杭州 310018
提出一种基于光栅反馈技术的掺铥光纤随机激光器。激光器采用半开腔设计,封闭端采用中心波长为1 940 nm的高反射率光纤光栅为激光器系统提供强反馈,增益介质采用1.5 m长的掺铥光纤,泵浦源采用793 nm半导体激光器,开放端采用光纤随机光栅提供随机分布反馈。该光纤随机光栅由飞秒激光逐点刻写技术制备,在10 cm单模光纤上刻写超过6 000个间距随机分布的折射率畸变点,以增强光纤的后向瑞利散射效应。实验测得中心波长为1 940 nm的随机激光输出,其泵浦阈值为2.33 W,在3.8 W泵浦功率下的输出功率为57 mW,光信噪比达56 dB。输出激光在1 h内的波长偏移量小于0.1 nm,功率变化约0.26 dB,具有良好的稳定性。
光纤激光器 随机激光器 掺铥光纤 光纤光栅 光栅反馈 Fiber laser Random laser Tm3+-doped fiber Fiber Bragg grating Fiber grating feedback 
光子学报
2022, 51(11): 1114001
作者单位
摘要
南京邮电大学电子与光学工程学院先进光子技术实验室,江苏 南京 210023
设计出一种宽带、频率间隔可切换的多波长布里渊随机光纤激光器。该激光器具有双开腔结构,通过调节前、后向布里渊泵浦功率比,可以实现输出多波长激光在单倍与双倍布里渊频移间隔之间切换。结果显示,当拉曼泵浦功率设置为831.8 mW时,得到了44.5 nm(1528~1572.5 nm)输出带宽内共253阶双倍频移间隔(~0.176 nm)的斯托克斯线,以及42.5 nm(1532~1574.5 nm)输出带宽内共483阶单倍频移间隔(~0.088 nm)的斯托克斯线。频率间隔可切换多波长布里渊随机光纤激光器有望拓宽多波长激光器在光通信和传感等领域的应用范围。
激光器 随机激光 频率间隔可切换 受激布里渊散射 
中国激光
2022, 49(11): 1101003
汪昭辉 1赵艳 1,3,4冯超 2
作者单位
摘要
1 北京工业大学材料与制造学部激光工程研究院,北京 100124
2 北京工业大学理学部,北京 100124
3 北京工业大学,跨尺度成型制造技术教育部重点实验室,北京 100124
4 北京工业大学,北京市激光应用技术研究中心,北京 100124
采用溶剂热法分别制备了球形银纳米颗粒和多形貌银纳米颗粒, 其中球形银纳米颗粒具有400 nm的窄带等离激元共振峰, 而多形貌银纳米颗粒的共振区间在400~700 nm之间, 将它们分别掺入R6G与PVP的混合溶液中, 利用旋涂法在玻璃基板上制备银纳米颗粒嵌入染料掺杂聚合物薄膜随机激光器。 采用纳秒脉冲激光进行随机激光泵浦实验, 实验结果表明球形银纳米颗粒染料掺杂聚合物薄膜只有自发辐射峰, 而多形貌银纳米颗粒染料掺杂聚合物薄膜具有线宽<0.8 nm的相干随机激光发射光谱, 其阈值为1.9 mJ·cm-2, 这可能是由于银纳米颗粒的等离激元共振区间与R6G的发射光谱重叠, 支持局域等离激元效应的形成, 明显的局域场增强有效地改善了与附近分子的相互作用, 从而激发了更多的辐射光子, 促进了高增益的形成。 进一步, 利用多形貌银纳米颗粒在银纳米颗粒染料掺杂聚合物薄膜中随机分布的特性, 通过改变泵浦位置, 实现了20 nm范围内的随机激光输出波长的调控, 具体输出范围为590.1~610.4 nm。 认为这是由于多形貌银纳米颗粒在不同位置的组成和分布不同, 改变了表面等离激元的相互作用和光子的散射能力, 从而形成不同的增益效应和不同的封闭光振荡路径。 此外, 考虑到多形貌银纳米颗粒的共振波长较宽, 探究了其用于输出其他颜色光的可能性。 以与上述银纳米颗粒R6G染料掺杂聚合物薄膜相似的制备方法, 制备了多形貌银纳米颗粒掺杂DCJTB染料聚合物薄膜, 并且进行随机激光泵浦实验。 结果表明, 可以有效的产生波长为675 nm, 半高宽<0.8 nm的相干红光随机激光, 并且阈值仅为0.98 mJ·cm-2。 研究结果在宽带可调谐随机激光器研究以及多色随机激光器研究领域具有重要的参考价值。
激光光谱 随机激光 多波长激光输出 表面等离激元共振 吸收光谱 Lasing spectrum Random laser Multi-wavelength Plasmonic Absorption spectrum 
光谱学与光谱分析
2022, 42(1): 38
作者单位
摘要
五邑大学 智能制造学部, 广东 江门 529000
随机激光的阈值与体系内的散射强度存在密切关系。高折射率二氧化钛(TiO2)纳米颗粒与染料掺杂聚合物分散液晶(DDPDLC)均匀混合后, 由于液晶微滴与TiO2纳米颗粒之间的强散射作用, DDPPLC的随机激光具有更低的激光发射阈值, 并且随TiO2纳米颗粒的掺杂浓度而变化; 在优化TiO2纳米颗粒掺杂浓度的基础上, DDPDLC的发射阈值为270μJ/cm2, 线宽下降至0.08nm; 温度实验证明了PDLC结构的散射是产生随机激光的主要工作机制, 在TiO2纳米颗粒掺杂后, DDPDLC样品依然保证了良好的可调性。
聚合物分散液晶 随机激光 纳米颗粒 polymer dispersed liquid crystal random laser nanoparticle 
光学技术
2021, 47(3): 334
作者单位
摘要
沈阳理工大学 理学院,辽宁 沈阳 110159
将向列相液晶TEB30A、手性剂S-811、激光染料PM597的混合物填充空芯光子晶体光纤中,以Nd: YAG倍频532 nm激光作为泵浦光源,测量激光辐射谱,研究了光子晶体光纤载体中的随机激光辐射行为。泵浦激光侧面入射,侧面出射随机激光波长范围为590~605 nm,半高全宽约为0.3 nm;辐射方向较广。泵浦光端面入射,端面出射随机激光波长范围为580~605 nm,半高全宽约为0.3 nm。加热样品至各向同性温度时,端面和侧面激光辐射被关断。由实验结果得出,光子晶体中随机激光辐射源于微孔中填充的染料掺杂液晶混合物。手性向列相液晶中光子传输平均自由程和液晶分子介电张量的涨落随温度的变化,是影响出射激光强度的主要因素。
随机激光 手性向列相液晶 空芯光子晶体光纤 温度 random laser chiral nematic liquid crystal hollow-core photonic-crystal fiber temperature 
红外与激光工程
2021, 50(4): 20200171
作者单位
摘要
南方科技大学电子与电气工程系, 广东 深圳 518055
随机激光器达到阈值的方式并不是通过谐振腔,而是通过光子在增益随机散射介质中的多次散射带来的光学反馈实现的。将液晶用作散射介质,可以利用液晶易调控的特点,调整系统无序程度和染料分子的取向,使液晶随机激光器的激光阈值、强度、偏振等特性得到调控,由此可极大地拓宽随机激光器的应用范围。系统介绍了液晶随机激光器的工作原理,并分别介绍了向列相、胆甾相、蓝相和等离激元增强液晶随机激光的近期研究进展。希望能为该领域的初学者提供基础知识,同时为有经验的研究人员跟踪最新的研究进展提供重要参考。
激光器 随机激光 液晶 多重散射 漫散射 
中国激光
2021, 48(12): 1201006
Author Affiliations
Abstract
1 Laboratory of Optical Fibers and Micro-nano Photonics, School of Instrument Science and Opto-electronicsEngineering, Hefei University of Technology, Hefei 230009, China
2 Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, United Kingdom
3 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology,Mianyang 621000, China
4 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
5 Department of Hepatobiliary and Vascular Surgery, Huangshan People’s Hospital, Huangshan 245000, China
We have demonstrated the realization of a coherent vesicle random lasing (VRL) from the dye doped azobenzene polymer vesicles self-assembled in the tetrahydrofuran-water system, which contains a double-walled structure: a hydrophilic and hydrophobic part. The effect of the dye and azobenzene polymer concentration on the threshold of random laser has been researched. The threshold of random laser decreases with an increase in the concentration of the pyrromethene 597 (PM597) laser and azobenzene polymer. Moreover, the scattering of small size group vesicles is attributed to providing a loop to boost the coherent random laser through the Fourier transform analysis. Due to the vesicles having the similar structure with the cell, the generation of coherent random lasers from vesicles expand random lasers to the biomedicine filed.
Random laser vesicles scattering azobenzene polymer 
Photonic Sensors
2020, 10(3): 254

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!