高旺城 1马瑞 1全欣 1陈宇 1[ ... ]刘军 1,2,*
作者单位
摘要
1 深圳大学微纳光电子学研究院二维材料光电科技国际合作联合实验室,广东 深圳 518060
2 中国科学院高功率激光物理重点实验室,上海 201800
中红外波段高功率激光光源在工业加工和生物医疗等领域中有着广泛的应用。报道了基于主振荡器功率放大器(MOPA)结构的百瓦级中红外连续波光纤随机激光器,获得了最高输出功率为100.40 W、斜率效率为47.8%、波长为1980 nm的连续波激光输出。得益于MOPA结构中光纤随机激光种子源在激光放大过程中的光谱带宽保持特性,100.40 W激光输出时的3 dB光谱带宽仅为~0.2 nm。激光器的短时时域强度波动和长时功率波动均表现出优良的稳定性。所提实验技术方案和实验结果有望进一步拓宽中红外高功率光纤随机激光器的应用范围。
激光器 光纤随机激光 高功率激光器 瑞利散射 中红外激光器 高稳定性 
中国激光
2024, 51(5): 0501002
张文铎 1,2何巍 1,2,*李智翰 1,2郭国文 1,2杨松岩 1,2
作者单位
摘要
1 北京信息科技大学 光电测试技术及仪器教育部重点实验室
2 北京信息科技大学 光纤传感与系统北京实验室,北京 100016
提出了一种基于M-Z结构的可调谐掺铒光纤随机激光器,并对随机激光输出过程、随机激光的波长可调谐输出以及随机激光的稳定性进行了实验研究。通过采用光纤熔接手段将两个2×2光纤耦合器进行熔接,构成全光纤M-Z滤波结构。实验结果表明,激光器的阈值功率为120 mW,调整可调谐衰减器改变增益损耗,实现波长可调谐输出,其中单波长输出分别为1 554.4,1 555.2和1 556.3 nm,信噪比达到31.65 dB;双波长输出分别为1 525.9,1 556.2和1 531.6,1 556.2 nm,信噪比优于21.92 dB;三波长输出分别为1 527.4,1 546.9,1 551.6和1 526.9,1 530.0,1 549.8 nm,信噪比优于20.10 dB;四波长输出为1 525.9,1 530.1,1 547.9和1 552.3 nm,信噪比优于18.95 dB;其中单波长和双波长的功率波动分别优于1.65和1.99 dB;激光器斜率效率为0.627%。
光纤随机激光 掺铒光纤 波长可调谐 random fiber laser erbium doped fiber M-Z M-Z wavelength tunable 
半导体光电
2023, 44(3): 371
于观玉 1张春香 2黄政 3刘锐 3[ ... ]刘军 1,*
作者单位
摘要
1 深圳大学微纳光电子学研究院二维材料光电科技国际合作联合实验室,广东 深圳 518060
2 深圳技术大学工程物理学院,广东 深圳 518118
3 深圳大学物理与光电工程学院光纤传感技术粤港联合研究中心,广东 深圳 518060
1.7 μm激光处于眼安全波段并位于许多重要气体分子的指纹吸收峰,在生物医疗、气体传感等领域具有重要应用价值。而涡旋光束作为一种新兴的结构光场,其具有环形光强分布和螺旋相位波前,并携带轨道角动量,在光通信、微粒操控等领域应用广泛。因此发展1.7 μm高能涡旋激光器具有重要的研究价值和应用前景。但传统稀土离子掺杂光纤或晶体的发射谱,或难以覆盖该波段,或在该波段激光增益较小,且涡旋光产生主要基于空间光结构,导致1.7 μm波段涡旋光激光系统复杂、集成度低,难以实现高功率输出。本文利用螺旋长周期光纤光栅作为涡旋模式转换器,在基于受激拉曼散射效应的1.7 μm波段光纤随机激光半开放腔中实现了全光纤结构的高功率涡旋激光输出,最大输出功率为2.09 W,中心波长为1690 nm。得益于涡旋光纤随机激光器的全光纤结构,该装置具有良好的时域稳定性,短时时域波动低至2.8%。该研究结果不仅为实现兼具高功率输出和良好时域稳定性的紧凑型1.7 μm波段涡旋激光器提供有效方案,还能进一步拓展其在激光医疗、气体检测、光镊和生物成像等领域的应用。
1.7 μm波段 涡旋光束 光纤随机激光 螺旋长周期光纤光栅 涡旋光纤随机激光 
光学学报
2023, 43(22): 2214003
作者单位
摘要
电子科技大学光纤传感与通信教育部重点实验室,四川 成都 611731
拉曼光纤随机激光结合无源传感单元可以实现超长距离的准分布式传感。然而,受限于光谱探测速度,该传感方案通常只适用于静态传感领域。针对该问题,将拉曼光纤随机激光与拍频光谱探测技术相结合,提出了一种新型的拉曼光纤随机激光长距离动态传感技术。首先,基于含时光谱稳态模型论证了光谱快速测量对长距离动态传感的适用性。随后,在原理性验证实验中通过处理本振光与光纤随机激光拍频后的时域信号,实现了对光纤随机激光光谱的快速测量,并突破了光波往返时间对传感带宽的限制。同时,利用去噪卷积神经网络对光谱的中心波长变化进行标定,大幅提高了扰动信号探测的信号质量,实现了对不同频率、不同波形的扰动信息的准确测量。该研究为进一步拓展光纤随机激光的应用领域提供了新的思路。
光纤传感 光纤随机激光 拉曼散射 瑞利散射 去噪卷积神经网络 
激光与光电子学进展
2023, 60(11): 1106027
作者单位
摘要
沈阳理工大学 理学院,辽宁 沈阳 110159
研究了向列相液晶激光器件侧面激光辐射谱,并深入分析了激光辐射机制。分别制备了传统液晶盒和引入SU-8光栅结构的两种器件,并注入向列相液晶TEB30A和激光染料PM597的混合物。利用Nd:YAG固体脉冲激光器倍频出的532 nm激光作为泵浦源正面入射器件,侧面探测激光辐射谱。在传统液晶盒器件侧面,测得 575~600 nm范围的随机激光辐射谱。而具有周期100 μm和8 μm 的SU-8光栅结构器件侧面,获得了多波长激光辐射谱。随着泵浦能量增大,最高强度激光辐射峰波长位置出现在583~585 nm和588~592 nm附近,FWHM约0.3 nm。基于光波导理论结合器件结构分析得出,在传统液晶盒中引入SU-8光栅结构增强了液晶器件的光波导效应,是获得多波长激光辐射谱的主要原因。
向列相液晶 SU-8光栅 多波长激光 随机激光 nematic liquid crystal SU-8 grating multi-wavelength laser random laser 
红外与激光工程
2023, 52(2): 20220159
作者单位
摘要
1 广东工业大学信息工程学院,广东 广州 510006
2 广东省信息光子技术重点实验室,广东 广州 510006
3 中国计量大学光学与电子科技学院,浙江 杭州 310018
采用能增强瑞利散射效率的光纤随机光栅作为掺铥光纤随机激光器的随机分布反馈介质,光纤环镜下激光器形成半开腔结构,在793 nm半导体激光器泵浦下,实现了波长为1951 nm的单波长随机激光输出。激光器的泵浦阈值功率为2.1 W,比已报道的相同泵浦波长的掺铥光纤随机激光器的阈值低40%。在泵浦功率为6 W时,获得的激光输出功率为142.9 mW,边模抑制比为43 dB,输出激光在1 h内的波长偏移量小于0.1 nm,功率波动小于3.7 mW,具有良好的稳定性。
激光器 随机激光 瑞利散射 掺铥光纤激光器 光纤随机光栅 光纤环镜 
中国激光
2023, 50(2): 0201002
作者单位
摘要
1 广东工业大学 信息工程学院,广州 510006
2 广东省信息光子技术重点实验室,广州 510006
3 中国计量大学 光学与电子科技学院,杭州 310018
提出一种基于光栅反馈技术的掺铥光纤随机激光器。激光器采用半开腔设计,封闭端采用中心波长为1 940 nm的高反射率光纤光栅为激光器系统提供强反馈,增益介质采用1.5 m长的掺铥光纤,泵浦源采用793 nm半导体激光器,开放端采用光纤随机光栅提供随机分布反馈。该光纤随机光栅由飞秒激光逐点刻写技术制备,在10 cm单模光纤上刻写超过6 000个间距随机分布的折射率畸变点,以增强光纤的后向瑞利散射效应。实验测得中心波长为1 940 nm的随机激光输出,其泵浦阈值为2.33 W,在3.8 W泵浦功率下的输出功率为57 mW,光信噪比达56 dB。输出激光在1 h内的波长偏移量小于0.1 nm,功率变化约0.26 dB,具有良好的稳定性。
光纤激光器 随机激光 掺铥光纤 光纤光栅 光栅反馈 Fiber laser Random laser Tm3+-doped fiber Fiber Bragg grating Fiber grating feedback 
光子学报
2022, 51(11): 1114001
作者单位
摘要
南京邮电大学电子与光学工程学院先进光子技术实验室,江苏 南京 210023
设计出一种宽带、频率间隔可切换的多波长布里渊随机光纤激光器。该激光器具有双开腔结构,通过调节前、后向布里渊泵浦功率比,可以实现输出多波长激光在单倍与双倍布里渊频移间隔之间切换。结果显示,当拉曼泵浦功率设置为831.8 mW时,得到了44.5 nm(1528~1572.5 nm)输出带宽内共253阶双倍频移间隔(~0.176 nm)的斯托克斯线,以及42.5 nm(1532~1574.5 nm)输出带宽内共483阶单倍频移间隔(~0.088 nm)的斯托克斯线。频率间隔可切换多波长布里渊随机光纤激光器有望拓宽多波长激光器在光通信和传感等领域的应用范围。
激光器 随机激光 频率间隔可切换 受激布里渊散射 
中国激光
2022, 49(11): 1101003
汪昭辉 1赵艳 1,3,4冯超 2
作者单位
摘要
1 北京工业大学材料与制造学部激光工程研究院,北京 100124
2 北京工业大学理学部,北京 100124
3 北京工业大学,跨尺度成型制造技术教育部重点实验室,北京 100124
4 北京工业大学,北京市激光应用技术研究中心,北京 100124
采用溶剂热法分别制备了球形银纳米颗粒和多形貌银纳米颗粒, 其中球形银纳米颗粒具有400 nm的窄带等离激元共振峰, 而多形貌银纳米颗粒的共振区间在400~700 nm之间, 将它们分别掺入R6G与PVP的混合溶液中, 利用旋涂法在玻璃基板上制备银纳米颗粒嵌入染料掺杂聚合物薄膜随机激光器。 采用纳秒脉冲激光进行随机激光泵浦实验, 实验结果表明球形银纳米颗粒染料掺杂聚合物薄膜只有自发辐射峰, 而多形貌银纳米颗粒染料掺杂聚合物薄膜具有线宽<0.8 nm的相干随机激光发射光谱, 其阈值为1.9 mJ·cm-2, 这可能是由于银纳米颗粒的等离激元共振区间与R6G的发射光谱重叠, 支持局域等离激元效应的形成, 明显的局域场增强有效地改善了与附近分子的相互作用, 从而激发了更多的辐射光子, 促进了高增益的形成。 进一步, 利用多形貌银纳米颗粒在银纳米颗粒染料掺杂聚合物薄膜中随机分布的特性, 通过改变泵浦位置, 实现了20 nm范围内的随机激光输出波长的调控, 具体输出范围为590.1~610.4 nm。 认为这是由于多形貌银纳米颗粒在不同位置的组成和分布不同, 改变了表面等离激元的相互作用和光子的散射能力, 从而形成不同的增益效应和不同的封闭光振荡路径。 此外, 考虑到多形貌银纳米颗粒的共振波长较宽, 探究了其用于输出其他颜色光的可能性。 以与上述银纳米颗粒R6G染料掺杂聚合物薄膜相似的制备方法, 制备了多形貌银纳米颗粒掺杂DCJTB染料聚合物薄膜, 并且进行随机激光泵浦实验。 结果表明, 可以有效的产生波长为675 nm, 半高宽<0.8 nm的相干红光随机激光, 并且阈值仅为0.98 mJ·cm-2。 研究结果在宽带可调谐随机激光器研究以及多色随机激光器研究领域具有重要的参考价值。
激光光谱 随机激光 多波长激光输出 表面等离激元共振 吸收光谱 Lasing spectrum Random laser Multi-wavelength Plasmonic Absorption spectrum 
光谱学与光谱分析
2022, 42(1): 38
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 电子科技大学 光纤传感与通信教育部重点实验室, 成都 611731
3 四川大学 电子信息工程学院, 成都 610064
4 中国工程物理研究院 研究生院, 北京 100088
较为系统地回顾了近年来学术界在随机分布反馈光纤激光器时-频-空域特性方面的研究进展,分析总结了随机分布反馈光纤激光器的时-频-空域动态特性影响因素,展望了随机分布反馈光纤激光器应用于高功率激光驱动装置的前景,并对未来潜在的研究方向进行了探讨。
光纤随机激光 时域 频域 空域 低相干性 高功率激光装置 random fiber laser time domain frequency domain spatial domain low coherent high power laser facility 
强激光与粒子束
2021, 33(11): 111003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!