红外与激光工程, 2020, 49 (9): 20201039, 网络出版: 2021-01-04   

从亚波长光栅到超构光栅:原理、设计及应用 下载: 2120次

From subwavelength grating to metagrating: principle, design and applications
作者单位
中山大学 物理学院,广东 广州 510275
引用该论文

陈瑞, 柳夏, 王虹, 石伟怡, 刘伟男, 江绍基, 董建文. 从亚波长光栅到超构光栅:原理、设计及应用[J]. 红外与激光工程, 2020, 49(9): 20201039.

Rui Chen, Xia Liu, Hong Wang, Weiyi Shi, Weinan Liu, Shaoji Jiang, Jianwen Dong. From subwavelength grating to metagrating: principle, design and applications[J]. Infrared and Laser Engineering, 2020, 49(9): 20201039.

参考文献

[1] Loewen E G, Popov E. Diffraction gGatings Applications (Optical Science Engineering)[M]. New Yk: CRC Press, 1997.

[2] Koenderink A F, Alu A, Polman A. Nanophotonics: shrinking light-based technology[J]. Science, 2015, 348(6234): 516-521.

[3] Collin S. Nanostructure arrays in free-space: optical properties and applications[J]. Reports on Progress in Physics, 2014, 77(12): 126402.

[4] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792.

[5] Cai W, Chettiar U K, Kildishev A V. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224.

[6] Yu N, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150.

[7] Ra’di Y, Sounas D L, Alù A. Metagratings: beyond the limits of graded metasurfaces for wave front control[J]. Physical Review Letters, 2017, 119(6): 067404.

[8] Bonod N, Jérôme N. Diffraction gratings: from principles to applications in high-intensity lasers[J]. Advanced Optics Photonics, 2016, 8(1): 156-199.

[9] Neviere M, Popov E. Light Propagation in Periodic Media: Differential They Design[M]. Boca Raton: CRC Press, 2002.

[10] Quaranta G, Basset G, Martin O J F. Recent advances in resonant waveguide gratings[J]. Laser & Photonics Review, 2018, 12(9): 1800017.1-1800017.31.

[11] Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613.

[12] Magnusson R, Wang S S. New principle for optical filters[J]. Applied Physical Letters, 1992, 61(9): 1022-1024.

[13] Chang-Hasnain C J. High-contrast gratings as a new platform for integrated optoelectronics[J]. Semiconductor Science & Technology, 2010, 26(26): 014043.

[14] Zhu Li, Yang Weijian, ChangHasnain C J. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber[J]. Optics Exp, 2017, 25(15): 18462-18473.

[15] Karagodsky V, Sedgwick F G, ChangHasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors[J]. Optics Express, 2010, 18(16): 16973-16988.

[16] Chang-Hasnain C J, Yang W. High-contrast gratings for integrated optoelectronics[J]. Advances in Optics & Photonics, 2012, 4(3): 379-440.

[17] Popov V, Boust F, Burokur S N. Constructing the near field and far field with reactive metagratings: study on the degrees of freedom[J]. Physical Review Applied, 2019, 11(2).

[18] Ra’di, Y, Alù A. Reconfigurable metagratings[J]. ACS Photonics, 2018, 5(5): 1779-1785.

[19] Fan Z, Shcherbakov M R, Allen M. Perfect diffraction with multiresonant bianisotropic metagratings[J]. ACS Photonics, 2018, 5(11): 4303-4311.

[20] Deng Zilan, Cao Yaoyu, Li Xiangping. Multifunctional metasurface: from extraordinary optical transmission to extraordinary optical diffraction in a single structure: publisher's note[J]. Photonics Research, 2018, 6(7): 6.

[21] Sell D, Yang J, Doshay S. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752-3757.

[22] Sell D, Yang J, Wang E W. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces[J]. ACS Photonics, 2018, 5(6): 2402-2407.

[23] Khaidarov E, Hao H, Paniaguadominguez R. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending[J]. Nano Letters, 2017, 17(10): 6267-6272.

[24] Deng ZiLan, Deng Junhong, Zhuang Xin. Facile metagrating holograms with broadband and extreme angle tolerance[J]. Light: Science & Applications, 2018, 7(1): 78.

[25] Epstein A, Rabinovich O. Perfect anomalous refraction with metagratings[C]European Conference on Antennas Propagation, 2018.

[26] Fu Yangyang, Shen Chen, Cao Yanyan. Reversal of transmission and reflection based on acoustic metagratings with integer parity design[J]. Nature Communications, 2019, 10(1): 2326-2332.

[27] Shi Tan, Wang Yujie, Deng Zilan. All‐dielectric kissing-dimer metagratings for asymmetric high diffraction[J]. Advanced Optical Materials, 2019, 7(24): 1901389.

[28] Liu Weinan, Chen Rui, Shi Weiyi. Narrow-frequency sharp-angular filters using all-dielectric cascaded metagratings[J]. Nanophotonics, 2020: 20200141.

[29] Zhang Lei, Mei Shengtao, Huang Kun. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 2016, 4(6): 818-833.

[30] Bonod N, Neauport J. Diffraction gratings: from principles to applications in high-intensity lasers[J]. Advances in Optics & Photonics, 2016, 8: 156-199.

[31] Pierce J R. Coupling of modes of propagation[J]. Journal of Applied Physics, 1954, 25(2): 179-183.

[32] Collin Stéphane. Nanostructure arrays in free-space: Optical properties and applications[J]. Reports on Progress in Physics Physical Society, 2014, 77(12): 126402.

[33] Quaranta G, Basset G, Martin O J F. Recent advances in resonant waveguide gratings[J]. Laser & Photonics Review, 2018, 12(9): 1800017.

[34] Deng Zilan, Zhang Shuang, Wang Guoping. A facile grating approach towards broadband, wide-angle and high-efficiency holographic metasurfaces[J]. Nanoscale, 2016, 8: 1588.

[35] Liu W, Kivshar Y S. Generalized Kerker effects in nanophotonics and meta-optics [Invited][J]. Optics Express, 2018, 26(10): 13085-13105.

[36] Chang-Hasnain C J, Yang W. High-contrast gratings for integrated optoelectronics[J]. Advances in Optics & Photonics, 2012, 4(3): 379-440.

[37] Yang W. High-contrast gratings for integrated optoelectronics[J]. Advances in Optics and Photonics, 2012, 4(3): 379-440.

[38] Wang Zhaorong, Zhang Bo, Deng Hui. Dispersion engineering for vertical microcavities using subwavelength gratings[J]. Physical Review Letters, 2015, 114(7): 073601.

[39] Liu Wenxing, Yu Tianbao, Sun Yong. Highly efficient broadband wave plates using dispersion-engineered high-index-contrast subwavelength gratings[J]. Physical Review Applied, 2019, 11(6): 064005.

[40] Epstein A, Rabinovich O. Perfect anomalous refraction with metagratings[C]European Conference on Antennas Propagation, 2018.

[41] Popov V, Boust F, Burokur S N. Controlling diffraction patterns with metagratings[J]. Physical Review Applied, 2018, 10(1): 011002.

[42] Rabinovich O, Kaplon I, Reis J. Experimental demonstration and in-depth investigation of analytically designed anomalous reflection metagratings[J]. Physical Review B, 2019, 99(12): 125101.

[43] Epstein A, Rabinovich O. Unveiling the properties of metagratings via a detailed analytical model for synthesis and analysis[J]. Physical Review Applied, 2017, 8(5): 054037.

[44] Rabinovich O, Epstein A. Analytical design of printed circuit board (pcb) metagratings for perfect anomalous reflection[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4086-4095.

[45] Popov V, Boust F, Burokur S N. Constructing the near field and far field with reactive metagratings: study on the degrees of freedom[J]. Physical Review Applied, 2019, 11(2): 024074.

[46] Chalabi H, Ra"Di Y, Sounas D L. Efficient anomalous reflection through near-field interactions in metasurfaces[J]. Physical Review B, 2017, 96(7): 075432.

[47] Patri A, Kenacohen S, Caloz C. Large-angle, broadband and multifunctional directive waveguide scatterer gratings[J]. ACS Photonics, 2019, 6(12): 3298-3305.

[48] Yang J, Sell D, Fan J A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering[J]. Annalen der Physik, 2018, 530(1): 1700302.

[49] Liu W, Miroshnichenko A E. Beam steering with dielectric metalattices[J]. ACS Photonics, 2018, 5(5): 1733-1741.

[50] Shi Weiyi, Deng Weimin, Liu Weinan. Rectangular dielectric metagrating for high-efficiency diffraction with large-angle deflection[J]. Chinese Optics Letters, 2020, 18(7): 073601.

[51] Neder V, Ra’di Y, Alù A. Combined metagratings for efficient broad-angle scattering metasurface[J]. ACS Photonics, 2019, 6(4): 1010-1017.

[52] Uleman F, Neder V, Cordaro A. Resonant metagratings for spectral and angular control of light for colored rooftop photovoltaics[J]. ACS Applied Energy Materials, 2020, 3(4): 3150-3156.

[53] Tiefenthaler K, Lukosz W. Integrated optical switches and gas sensors[J]. Optics Letters, 1984, 9: 137.

[54] Norton S M, Morris G M, Erdogan T. Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models[J]. Journal of The Optical Society of America A-Optics Image Science and Vision, 1998, 15(2): 464-472.

[55] Yih J, Chu Y, Mao Y. Optical waveguide biosensors constructed with subwavelength gratings[J]. Applied Optics, 2006, 45(9): 1938-1942.

[56] Wawro D, Tibuleac S, Magnusson R, et al. Optical fiber endface biosens based on resonances in dielectric waveguide gratings[C]SPIE, 2000, 3911: 8694.

[57] Cunningham B T, Li P, Lin B. Colorimetric resonant reflection as a direct biochemical assay technique[J]. Sensors and Actuators B-chemical, 2002, 81(2): 316-328.

[58] Lin B, Qiu J, Gerstenmeier J. A label-free optical technique for detecting small molecule interactions[J]. Biosensors and Bioelectronics, 2002, 17(9): 827-834.

[59] Cunningham B T, Lin B, Qiu J. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions[J]. Sensors and Actuators B-chemical, 2002, 85(3): 219-226.

[60] Cunningham B T, Li P, Schulz S C. Label-free assays on the bind system[J]. Journal of Biomolecular Screening, 2004, 9(6): 481-490.

[61] Fang Y, Ferrie A M, Fontaine N H. Resonant waveguide grating biosensor for living cell sensing[J]. Biophysical Journal, 2006, 91(5): 1925-1940.

[62] Omalley S M, Xie X, Frutos A G. Label-free high-throughput functional lytic assays[J]. Journal of Biomolecular Screening, 2007, 12(1): 117-125.

[63] Walia J, Dhindsa N, Khorasaninejad M. Color generation and refractive index sensing using diffraction from 2d silicon nanowire arrays[J]. Small, 2014, 10(1): 144-151.

[64] Hermannsson P G, Vannahme C, Smith C L. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths[J]. Applied Physics Letters, 2014, 105(7): 071103.

[65] Wang Yongjin, Chen Jiajia, Shi Zheng. Suspended membrane GaN gratings for refractive index sensing[J]. Applied Physics Express, 2014, 7(5): 052201.

[66] Marciniak M, Gębski M, Dems M. Subwavelength high contrast gratings as optical sensing elements[J]. Scientific Bulletin. Physics / Technical University of Łódź, 2017, 38: 61-70.

[67] Sahoo P K, Sarkar S, Joseph J. High sensitivity guided-mode-resonance optical sensor employing phase detection[J]. Scientific Reports, 2017, 7(1): 7607-7607.

[68] Ganesh N, Zhang W, Mathias P C. Enhanced fluorescence emission from quantum dots on a photonic crystal surface[J]. Nature Nanotechnology, 2007, 2(8): 515-520.

[69] Ganesh N, Mathias P C, Zhang W. Distance dependence of fluorescence enhancement from photonic crystal surfaces[J]. Journal of Applied Physics, 2008, 103(8): 083104.

[70] Kano H, Kawata S. Two-photon-excited fluorescence enhanced by a surface plasmon.[J]. Optics Letters, 1996, 21(22): 1848-1850.

[71] Wenseleers W, Stellacci F, Meyerfriedrichsen T. Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters[J]. Journal of Physical Chemistry B, 2002, 106(27): 6853-6863.

[72] Soria S, Katchalski T, Teitelbaum E. Enhanced two-photon fluorescence excitation by resonant grating waveguide structures[J]. Optics Letters, 2004, 29(17): 1989-1991.

[73] André Selle, Kappel C, Bader M A. Picosecond-pulse-induced two-photon fluorescence enhancement in biological material by application of grating waveguide structures[J]. Optics Letters, 2005, 30(13): 1683-1685.

[74] Soria S, Badenes G, Bader M A. Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation[J]. Applied Physics Letters, 2005, 87(8): 081109.

[75] Thayil A, Muriano A, Salvador J P. Nonlinear immunofluorescent assay for androgenic hormones based on resonant structures[J]. Optics Express, 2008, 16(17): 13315-13322.

[76] Nazirizadeh Y, Bog U, Sekula S. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers[J]. Optics Express, 2010, 18(18): 19120-19128.

[77] Nazirizadeh Y, Behrends V, Prosz A. Intensity interrogation near cutoff resonance for label-free cellular profiling[J]. Scientific Reports, 2016, 6(1): 24685-24685.

[78] Jahns S, Brau M, Meyer B. Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection.[J]. Biomedical Optics Express, 2015, 6(10): 3724-3736.

[79] Li H, Hsu W, Liu K. A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities[J]. Sensors and Actuators B-chemical, 2015: 371-380.

[80] Lin Y, Hsieh W, Chau L. Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection[J]. Sensors and Actuators B-Chemical, 2017: 659-666.

[81] Mcmahon J M, Henzie J, Odom T W. Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons[J]. Optics Express, 2007, 15(26): 18119-18129.

[82] Sun L B, Hu X L, Xu Y. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films[J]. Optics Communications, 2014, 333(15): 16-21.

[83] Ebbesen T W, Lezec H J, Ghaemi H F. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

[84] Ghaemi H F, Thio T, Grupp D E. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779-6782.

[85] Chen Q, Cumming D R. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13): 14056-14062.

[86] Chen Q, Das D, Chitnis D. A CMOS image sensor integrated with plasmonic colour filters[J]. Plasmonics, 2012, 7(4): 695-699.

[87] Yokogawa S, Burgos S P, Atwater H A. Plasmonic color filters for CMOS image sensor applications[J]. Nano Letters, 2012, 12(8): 4349-4354.

[88] Chen Q, Chitnis D, Walls K. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technology Letters, 2012, 24(3): 197-199.

[89] Burgos S P, Yokogawa S, Atwater H A. Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor[J]. ACS Nano, 2013, 7(11): 10038-10047.

[90] Horie Y, Han S, Lee J. Visible wavelength color filters using dielectric subwavelength gratings for backside-illuminated cmos image sensor technologies[J]. Nano Letters, 2017, 17(5): 3159-3164.

[91] Mahani F F, Mokhtari A, Mehran M. Dual mode operation, highly selective nanohole array-based plasmonic colour filters[J]. Nanotechnology, 2017, 28(38): 385203.

[92] Tang L, Latif S, Miller D A. Plasmonic device in silicon CMOS[J]. Electronics Letters, 2009, 45(13): 706-708.

[93] Balaur E, Sadatnajafi C, Kou S S. Continuously tunable, polarization controlled, colour palette produced from nanoscale plasmonic pixels[J]. Scientific Reports, 2016, 6(1): 28062-28062.

[94] Yu Yan, Chen Qin, Wen Long. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters[J]. Optics Express, 2015, 23(17): 21994-22003.

[95] Knop K. Diffraction gratings for color filtering in the zero diffraction order[J]. Applied Optics, 1978, 17(22): 3598-3603.

[96] Ganesh N, Xiang A, Beltran N B. Compact wavelength detection system incorporating a guided-mode resonance filter[J]. Applied Physics Letters, 2007, 90(8): 81103.

[97] Duempelmann L, Gallinet B, Novotny L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 2017, 4(2): 236-241.

[98] Zeng B, Gao Y, Bartoli F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reports, 2013, 3(1): 2840-2840.

[99] Shrestha V R, Lee S, Kim E. polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array[J]. Scientific Reports, 2015, 5(1): 12450-12450.

[100] Wang J, Fan Q, Zhang S. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency[J]. Applied Physics Letters, 2017, 110(3): 31110.

[101] Lee K, Jang J Y, Park S J. Angle‐insensitive and CMOS-compatible subwavelength color printing[J]. Advanced Optical Materials, 2016, 4(11): 1696-1702.

[102] Koirala I, Shrestha V R, Park C. All dielectric transmissive structural multicolor pixel incorporating a resonant grating in hydrogenated amorphous silicon.[J]. Scientific Reports, 2017, 7(1): 13574.

[103] Koirala I, Shrestha V R, Park C. Polarization-controlled broad color palette based on an ultrathin one-dimensional resonant grating structure[J]. Scientific Reports, 2017, 7(1): 40073.

[104] Crozier K B, Seo K, Park H. controlling the light absorption in a photodetector via nanowire waveguide resonances for multispectral and color imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(6): 1-12.

[105] Seo K, Wober M, Steinvurzel P. Multicolored vertical silicon nanowires[J]. Nano Letters, 2011, 11(4): 1851-1856.

[106] Park H, Dan Y, Seo K. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption[J]. Nano Letters, 2014, 14(4): 1804-1809.

[107] Yoon J, Kim K, Meyyappan M. Optical characteristics of silicon-based asymmetric vertical nanowire photodetectors[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2261-2266.

[108] Yue W, Gao S, Lee S. Subtractive color filters based on a silicon-aluminum hybrid-nanodisk metasurface enabling enhanced color purity[J]. Scientific Reports, 2016, 6(1): 29756-29756.

[109] Park C, Shrestha V R, Yue W. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks[J]. Scientific Reports, 2017, 7(1): 2556-2556.

[110] Park C, Koirala I, Gao S. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks[J]. Optics Express, 2019, 27(2): 667-679.

[111] Miyata M, Nakajima M, Hashimoto T. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces[J]. ACS Photonics, 2019, 6(6): 1442-1450.

[112] Vashistha V, Vaidya G, Gruszecki P. Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas[J]. Scientific Reports, 2017, 7(1): 8092.

[113] Yang Bo, Liu Wenwei, Li Zhancheng. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009.

[114] Dan A, Barshilia H C, Chattopadhyay K. Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 1050-1077.

[115] Khodasevych I, Wang L, Mitchell A. Micro- and nanostructured surfaces for selective solar absorption[J]. Advanced Optical Materials, 2015, 3(7): 852-881.

[116] Cui Yanxia, He Yingran, Jin Yi. Plasmonic and metamaterial structures as electromagnetic absorbers[J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

[117] Zhao Bin, Hu Mingke, Ao Xianze. Radiative cooling: A review of fundamentals, materials, applications, and prospects[J]. Applied Energy, 2019: 489-513.

[118] Cui Yanxia, Fung Kung Hin, Xu Jun. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial sab[J]. Nano Letters, 2012, 12(3): 1443-1447.

[119] Li Yuyin, Liu Zhengqi, Zhang Houjiao. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks[J]. Optics Express, 2019, 27(8): 11809-11818.

[120] Li Junyu, Bao Li, Jiang Shun. Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging[J]. Optics Express, 2019, 27(6): 8375-8386.

[121] Lin H, Sturmberg B C, Lin K. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light[J]. Nature Photonics, 2019, 13(4): 270-276.

[122] Luo M, Shen S, Zhou L. Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime[J]. Optics Express, 2017, 25(14): 16715-16724.

[123] Han X, He K, He Z. Tungsten-based highly selective solar absorber using simple nanodisk array[J]. Optics Express, 2017, 25(24): A1072-A1078.

[124] Nielsen M G, Pors A, Albrektsen O. Efficient absorption of visible radiation by gap plasmon resonators[J]. Optics Express, 2012, 20(12): 13311-13319.

[125] Mann S A, Garnett E C. Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells[J]. ACS Photonics, 2015, 2(7): 816-821.

[126] Chang C, Kortkamp W J, Nogan J. High-temperature refractory metasurfaces for solar thermophotovoltaic energy harvesting[J]. Nano Letters, 2018, 18(12): 7665-7673.

[127] Zhang Nan, Zhou Peihong Cheng Dengmu. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers[J]. Optics Letters, 2013, 38(7): 1125-1127.

[128] Cattoni A, Ghenuche P, Haghirigosnet A M. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography[J]. Nano Letters, 2011, 11(9): 3557-3563.

[129] Zhao Bo, Wang Liping, Shuai Yong. Thermophotovoltaic emitters based on a two-dimensional grating/thin-film nanostructure[J]. International Journal of Heat and Mass Transfer, 2013, 67: 637-645.

[130] Zhang B, Hendrickson J, Guo J. Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures[J]. Journal of the Optical Society of America B, 2013, 30(3): 656.

[131] Zhang Nan, Zhou Peiheng, Wang Shuya. Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers[J]. Optics Communications, 2015, 338: 388-392.

[132] Wu C, Neuner B, Shvets G. Large-area, wide-angle, spectrally selective plasmonic absorber[J]. Physical Review B, 2011, 84(7): 075102.

[133] Lei L, Li S, Huang H. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.[J]. Optics Express, 2018, 26(5): 5686-5693.

[134] Kang S, Qian Z, Rajaram V. Ultra‐narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J]. Advanced Optical Materials, 2019, 7(2): 1801236.1-1801236.8.

[135] Butun S, Aydin K. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers[J]. Optics Express, 2014, 22(16): 19457-19468.

[136] Liu X, Tyler T, Starr T. Taming the blackbody with infrared metamaterials as selective thermal emitters.[J]. Physical Review Letters, 2011, 107(4): 045901.

[137] Ma Wei, Wen Yongzheng, Yu Xiaomei. Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators[J]. Optics Express, 2013, 21(25): 30724-30730.

[138] Grant J, Mccrindle I J, Li C. Multispectral metamaterial absorber[J]. Optics Letters, 2014, 39(5): 1227-1230.

[139] Aydin K, Ferry V E, Briggs R M. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2011, 2(1): 517.

[140] Li W, Guler U, Kinsey N. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959-7965.

[141] Nagarajan A, Vivek K, Shah M. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration[J]. Advanced Optical Materials, 2018, 6(16): 1800253.

[142] Muhammad N, Tang X, Tao F. Broadband polarization-insensitive absorption by metasurface with metallic pieces for energy harvesting application[J]. Materials Science and Engineering B-advanced Functional Solid-state Materials, 2019, 249: 114419.

[143] Liu Jign, Chen Wei, Zheng Jiachun. Wide-angle polarization-independent ultra-broadband absorber from visible to infrared[J]. Nanomaterials, 2019, 10(1): 27.

[144] Wu Dong, Liu Chang, Liu Yumin. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region[J]. Optics Letters, 2017, 42(3): 450-453.

[145] Liu Z, Tang P, Liu X. Truncated titanium/semiconductor cones for wide-band solar absorbers[J]. Nanotechnology, 2019, 30(30): 305203.

[146] Chi Kequn, Yang Liu, Liu Zhaolang. Large-scale nanostructured low-temperature solar selective absorber[J]. Optics Letters, 2017, 42(10): 1891-1894.

[147] Chi K, Yang L, He S. Ultrathin nanostructured solar selective absorber based on a two-dimensional hemispherical shell array[J]. Applied Physics Letters, 2018, 112(6): 063903.

[148] Zhang Z, Mo Y, Wang H. High-performance and cost-effective absorber for visible and near-infrared spectrum based on a spherical multilayered dielectric–metal structure[J]. Applied Optics, 2019, 58(16): 4467-4473.

[149] Ding Q, Barna S F, Jacobs K. Feasibility analysis of nanostructured planar focusing collectors for concentrating solar power applications[J]. ACS Applied Energy Materials, 2018, 1(12): 6927-6935.

[150] Wu Shangliang, Ye Yan, Jiang Zhouying. Large‐area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption[J]. Advanced Optical Materials, 2019, 7(24): 1901162.

[151] Yang Weijian, Sun Tianbo, Rao Yi. High speed optical phased array using high contrast grating all-pass filters.[J]. Optics Express, 2014, 22(17): 20038-20044.

[152] Zhang Ziying, Kang Ming, Zhang Xueqian. Coherent perfect diffraction in metagratings[J]. Advanced Materials, 2020, 32(36): 2002341.

陈瑞, 柳夏, 王虹, 石伟怡, 刘伟男, 江绍基, 董建文. 从亚波长光栅到超构光栅:原理、设计及应用[J]. 红外与激光工程, 2020, 49(9): 20201039. Rui Chen, Xia Liu, Hong Wang, Weiyi Shi, Weinan Liu, Shaoji Jiang, Jianwen Dong. From subwavelength grating to metagrating: principle, design and applications[J]. Infrared and Laser Engineering, 2020, 49(9): 20201039.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!