光学 精密工程, 2013, 21 (9): 2354, 网络出版: 2013-09-25   

空间测量定位网络的典型布局

Typical deployments of workspace measurement and positioning system
作者单位
1 湖北工业大学 机械工程学院, 湖北 武汉 430068
2 天津大学 精密测试技术国家重点实验室, 天津 300072
摘要
空间测量定位系统在多站协同作用下实现测量, 测站布局对系统测量精度、测量范围及使用成本影响很大。本文从wMPS网络布局和定位误差的关系入手, 重点研究了测站分布几何对定位误差的影响。首先, 建立了系统的定位误差模型, 分析了测站单向通讯几何约束以及测站数目对改善测量精度的影响; 然后, 设计了两到四测站的多种典型布局形式, 分析了典型布局的误差分布特性; 最后, 利用实验室样机对典型布局的误差特性进行了验证。实验结果表明, O_4型布局整体测量精度最高, L_3型布局对I_2型布局测量精度的增强幅度约为40%, O_4型布局对L_3型布局测量精度的提高幅度大部分处于20%以内。本文的研究为全局测量网络优化提供了有效的理论支撑。
Abstract
Workspace measurement and positioning system works at multi-station in a synergistic effect and how to deploy the stations has a significant impact on the measurement range, accuracy, and the use-cost. This paper explores the effect of the geometry of station distribution on position errors based on the relation between the wMPS network deployment and position errors. Firstly, a positioning error model was established, the station one-way communication constraints were analyzed, and the improvement of increasing the number of stations on measurement accuracy was analyzed. Then, typical deployments of two to four stations were designed and the error distribution characteristics were studied. Finally, the error characteristics of typical deployments were verified based on the latest prototype in a lab. Experiment results show that O_4 typical deployment has the highest accuracy, the measuring accuracy from the L_3 typical deployment is higher by 40% than that of the I_2 deployment. Moreover, O_4 typical deployment has 20% improvement on measuring accuracy than that of the L_3 typical deployment. The research work provides an effective theoretical support for global measurement network optimization.
参考文献

[1] 黄桂平.大尺寸三坐标测量方法与系统[J].宇航计测技术, 2007, 27(4): 1-7.

    HUANG G P. Measurement methods of the large scale 3D coordinate and its system [J]. Journal of Astronautic Metrology and Measurement, 2007, 27(4): 1-7. (in Chinese)

[2] ESTLER W T, EDMUNDSON K L, PEGGS G N. Large-scale metrology - An update [J]. CIRP Annals-Manufacturing Technology, 2002, 51(2): 587-609.

[3] MAUTZ R. Overview of current indoor positioning systems [J]. Geodesy and Cartography, 2009, 35(1): 18-22.

[4] MAISANO D A, JAMSHIDI J, FRANCESCHINI F, et al.. Indoor GPS : system functionality and initial performance evaluation [J]. Int. J. Manufacturing Research, 2008, 3(3): 335-349.

[5] MUELANER J E, WANG Z, MARTIN O, et al.. Estimation of uncertainty in three-dimensional coordinate measurement by comparison with calibrated points [J]. Measurement Science and Technology, 2010(21): 1-10.

[6] 劳达宝, 杨学友, 邾继贵, 等.扫描平面激光坐标测量系统校准方法的优化[J].光学 精密工程, 2011, 19(4): 870-877.

    LAO D B, YANG X Y, ZHU J G, et al.. Optimization of calibration method for scanning planar laser coordinate measurement system [J]. Opt. Precision Eng., 2011, 19(4): 870-877. (in Chinese)

[7] DEPENTHAL C, SCHWENDEMANN J. IGPS-A new system for static and kinematic measurements [C]. Proceedings of the 9th Conference on Optical 3D Measurement Techniques, 2009: 1-10.

[8] SCHMITT R, NISCH S, SCHONBERG A. Performance evaluation of iGPS for industrial applications [C]. Proceedings of International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 2010.

[9] XIONG Z, ZHU J G, ZHAO Z Y. Workspace measuring and positioning system based on rotating laser planes [J]. MECHANIKA, 2012, 18(1): 94-98.

[10] 王一, 刘常杰, 任永杰, 等.通用机器人视觉检测系统的全局校准技术[J]. 光学 精密工程, 2009, 17(12): 302-3033.

    WANG Y, LIU C J, REN Y J, et al. Global calibration of visual inspection system based on universal robots[J]. Opt. Precision Eng., 2009, 17(12): 3028-3033. (in Chinese)

[11] YANG L H, YANG X Y, ZHU J G, et al.. Novel method for spatial angle measurement based on rotating planar laser beams [J]. Chinese Journal of Mechanical Engineering, 2010, 23(6): 758-764.

[12] 耿磊, 邾继贵, 熊芝, 等.wMPS测角不确定度研究[J]. 光电工程, 2011, 38(10): 6-12.

    GENG L, ZHU J G, XIONG Z, et al.. Research on angle measurement uncertainty of wMPS[J]. Opto-Electronic Engineering, 2011, 38(10): 6-12. (in Chinese)

[13] 熊芝, 邾继贵, 耿磊,等.空间测量定位系统测角不确定度分析及检定[J]. 传感技术学报, 2012, 25(2): 229-235.

    XIONG Z, ZHU J G, GENG L, et al.. Verification of angle measuring uncertainty for workspace Measuring and Positioning System[J]. Chinese Journal of Sensors and Actuators, 2012, 25(2): 229-235. (in Chinese)

[14] RICHARD A P.电子战目标定位方法(屈晓旭, 罗勇等译)[M].北京: 电子工业出版社, 2008.

    RICHARD A P. Electronic Warfare Target Location Methods(translated by QU X X, LUO Y, et al.) [M]. Beijing: Electronic Industry Press, 2008. (in Chinese)

[15] 费业泰.误差理论与数据处理[M].5版.北京: 机械工业出版社, 2007.

    FEI Y T. Error theory and data processing[M]. 5th ed. Beijing: China Machine Press, 2007. (in Chinese)

[16] 赵立荣, 朱玮, 曹永刚, 等.基于构建最优函数提高飞机姿态测量精度[J]. 光学 精密工程, 2012, 20(6): 1325-1333.

    ZHAO L R, ZHU W, CAP Y G, et al.. Improvement of measurement precision of plane attitude by constructing optimization functions[J]. Opt. Precision Eng., 2012, 20(6): 1325-1333. (in Chinese)

熊芝, 邾继贵, 薛彬, 赵子越. 空间测量定位网络的典型布局[J]. 光学 精密工程, 2013, 21(9): 2354. XIONG Zhi, ZHU Ji-gui, XUE Bin, ZHAO Zi-yue. Typical deployments of workspace measurement and positioning system[J]. Optics and Precision Engineering, 2013, 21(9): 2354.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!