大气与环境光学学报, 2015, 10 (2): 149, 网络出版: 2015-04-14  

膜采样与β射线法测定气溶胶PM2.5质量浓度的对比分析

Comparison and Analysis of Measurement of PM2.5 Between Filter-Based Sampling Method and β-Ray Attenuation Method
作者单位
1 中国气象科学研究院,北京 100081
2 中国气象局气象探测中心, 北京 100081
3 中国科学院大学, 北京 100049
4 中国气象局气象干部培训学院,北京 100081
摘要
利用β射线法气溶胶质量浓度自动观测仪器和膜采样设备,于2013年9月至10月在北京上甸子大气本底站进 行了气溶胶PM2.5 质量浓度的自动观测和人工采样方法的对比试验。结果表明,两种方法的观测结果间具有较 好的一致性,呈显著的线性相关关系;在PM2.5 质量浓度较低(<35 μg·m-3)和较 高(>250 μg·m-3)时,两种方法间的偏差较大;随着空气PM2.5 质量浓度的增加,自动观 测方法与人工方法观测结果间的偏差逐渐增大。两种方法间的线性回归方程斜率、截距和相关系数均 达到了国家环境保护标准HJ 653-2013的有关要求。对全部观测数据、>10 μg·m-3和 10~150 μg·m-3浓度范围内的数据分别建立了回归订正方程,同时,根据不同气 团轨迹条件也建立了订正方程,订正效果表明以10~150 μg·m-3范围内数据建立的回归订正方程为最优。
Abstract
A compared experiment of PM2.5 mass concentration automatic and manual sampling methods was carried out in Shangdianzi Atmospheric Background Station in Beijing from September to October in 2013 by using ray automatic observation instruments and filter-based sampling equipment. The results showed that there is good consistency and significant linear relationship between the observation data of the two methods; when PM2.5 mass concentration is lower than 35 μg·m-3 or higher than 250 μg·m-3, the deviation between the two methods is larger than other circumstances; along with the increase of PM2.5 mass concentration, the deviation of two methods increased gradually. The linear regression equation’s slope, intercept and correlation coefficient between the two methods all reach the relevant requirements of the People’s Republic of China State Environmental Protection Standard of HJ 653-2013. For all observation data, greater than 10 μg·m-3 and the range data of 10~150 μg·m-3, a correct regression equation is established respectively, and also according to the different air back trajectories conditions correct equations are established. The correction effects shows that the established equati within the rae data of 10~150 μg·m-3 is the best one.
参考文献

[1] 刘 强, 王明星, 李 晶, 等. 大气气溶胶研究现状和发展趋势[J]. 中国粉体技术, 1999, 5(3): 20-26.

    Liu Qiang, Wang Mingxing, Li Jing, et al. Present research on atmospheric aerosol and its trends[J]. China Powder Science and Technology, 1999, 5(3): 20-26(in Chinese).

[2] Lin J J. Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan[J]. Atmos. Environ., 2002, 36(12): 1911-1920.

[3] Lohmann U, Feichter J. Global indirect aerosol effects: a review[J]. Atmos. Chem. Phys., 2005, 5: 715-737.

[4] Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2250-2253.

[5] Yokouchi Y, Ambe Y. Aerosols formed from the chemical reaction of monoterpenes and ozone[J]. Atmos. Environ., 2007, 41(Supplement1): 192-197.

[6] Chimidza S, Moloi K. Identification of sources of aerosol particles in three locations in eastern Botswana[J]. J. Geophys. Res., 2000, 105( D14): 17811-17818.

[7] 白志鹏, 董海燕, 蔡斌彬, 等. 灰霾与能见度研究进展[J]. 过程工程学报, 2006, (z2): 36-41.

    Bai Zhipeng, Dong Haiyan, Cai Binbin, et al. Dust and visibility[J]. the Chinese Journal of Process Engineering, 2006, (z2): 36-41(in Chinese).

[8] 宋 字, 唐孝炎, 方 晨, 等. 北京市能见度下降与颗粒物污染的关系[J]. 环境科学学报, 2003, (4): 468-471.

    Song Yu, Yang Xiaoyan, Fang Chen, et al. Relationship between the visibility degradation and particle pollution in Beijing[J]. Acta Scientiae Circumstantiae, 2003, (4): 468-471(in Chinese).

[9] 王 秦,5cm, 陈 晨, 等. 我国雾霾天气PM2.5 污染特征及其 对人群健康的影响[J]. 中华医学杂志, 2013, 93(34): 2691-2694.

    Wang Qin, Li Tiantian, Chen Chen, et al. The PM2.5 pollution character of fog and haze and its impact on human health[J]. National Medical Journal of China, 2013, 93(34): 2691-2694(in Chinese).

[10] 潘本锋, 汪 巍, 李 亮,等. 我国大中型城市秋冬季节雾霾天气污染特征与成因分析[J]. 环境与持续发展, 2013, (1): 33-36.

    Pan Benfeng, Wang Wei, Li Liang, et al. Analysis of the reason of formation and the characteristic of pollution about fog or haze at key cities in autumn and winter in China[J]. Environment and Sustainable Development, 2013, (1): 33-36(in Chinese).

[11] 张小曳, 孙俊英, 王亚强,等. 我国雾-霾成因及其治理的思考[J]. 科学通报, 2013, 58(13): 1178-1187.

    Zhang Xiaoye, Sun Junying, Wang Yaqiang, et al. Factors contributing to haze and fog in China[J]. Chinese Science Bulletin, 2013, 58(13):1178-1187(in Chinese).

[12] 环境保护部, 国家质量监督检验检疫总局. 中华人民共和国国家标准《环境空气质量标准》(GB3095-2012)[S]. 2012.

    Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision. Inspection and Quarantine of the People’s Republic of China, National Standard of the People’s Republic of China 《Ambient air quality standards》(GB3095-2012)[S]. 2012(in Chinese).

[13] 崔延青, 王春迎, 尚永昌. 大气细粒子(PM2.5 )监测技术进展[J]. 中国环保产业, 2012, (4): 8-13.

    Cui Yaqing, Wang Chunying, Shang Yongchang. Development of particulate matter in ambient air (PM2.5 ) monitoring technique[J]. China Environmental Protection Industry, 2012, (4): 8-13(in Chinese).

[14] 但德忠. 环境空气PM2.5 监测技术及其可比性研究进展[J]. 中国测试, 2013, (2): 1-5.

    Dan Dezhong. Advance on comparison research of monitoring techniques for PM2.5 in ambient air[J]. China Measurement & Test, 2013, (2): 1-5(in Chinese).

[15] 陶巍巍, 许晓楠, 华海宁. PM2.5 监测技术及防控措施研究[J]. 山东交通学院学报, 2013, 21(2): 80-83.

    Tao Weiwei, Xu Xiaonan, Hua Haining. PM2.5 monitoring technique and the prevention and control measures[J]. Journal of Shandong Jiaotong University, 2013, 21(2): 80-83(in Chinese).

[16] 周 强, 梁汉东, 李金英. 大气颗粒物的仪器分析方法[J]. 分析测试学报, 2004, (5): 132-135.

    Zhou Qiang, Liang Handong, Li Jinying. The instrumental analysis of atmospheric particulates[J]. Journal of Instrumental Analysis, 2004, (5): 132-135(in Chinese).

[17] 张予燕. β射线法与振荡天平法测定环境中PM10 的对比分析[J]. 仪器仪表与分析监测, 2006, (1): 45-46.

    Zhang Yuyan. The contrast analysis between β-ray decay method and ambient particulate monitor to detect air PM10[J]. Instrumentation Analysis Monitoring, 2006, (1): 45-46(in Chinese).

[18] 张元茂, 郑叶飞. β射线衰减法与微量震荡天平法测定PM10 的比较[J]. 环境监测管理与技术, 2002, (4): 21-23.

    Zhang Yuanmao, Zheng Yefei. Comparison of β-ray decay method and tapered elemet osillating microbalance method to detect PM10[J]. The Administration and Technique of Environmental Monitoring, 2002, (4): 21-23(in Chinese).

[19] 张展毅, 李丰果, 杨冠玲, 等. 大气颗粒物浓度自动监测仪器的研制及性能比对测试[J]. 北京 大学学报, 2006, (11): 767-773.

    Zhang Zhanyi, Li Fengguo, Yang Guanling, et al. Development of analyzer for atmospheric particulate matter concentration and its performance test[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, (11): 767-773(in Chinese).

[20] Charrona A, Harrisona R M, Moorcroft S, et al. Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments[J]. Atmos. Environ, 2004, 38(3): 415-423.

[21] Kinghama S, Duranda M, Aberkane T, et al. Winter comparison of TEOM, MiniVol and DustTrak PM10 monitors in a woodsmoke environment[J]. Atmos. Environ., 2006, 40: 338-347.

[22] 樊 霞. DHS在β射线法监测PM2.5 中的应用比较[J]. 仪器仪表与分析监测, 2013, (2): 40-42.

    Fan Xia. Applicative comparison of DHS β-Ray method to detect PM2.5[J]. Instrumentation Analysis Monitoring, 2013, (2): 40-42(in Chinese).

[23] 潘本锋, 汪 巍, 王瑞斌, 等. 我国PM2.5 监测网络布局与监测方法体系构建策略分析[J]. 环境与可 持续发展, 2013, (3): 9-13.

    Pan Benfeng, Wang Wei, Wang Ruibin, et al. Analysis on the construct of fine particle monitoring network and monitoring technique system in China[J]. Environment and Sustainable Development, 2013, (3): 9-13(in Chinese).

[24] 冯 进. PM2.5 监测技术的发展及测量数据准确性的保障[J]. 计量与测试技术, 2014, (2): 52-54.

    Feng Jin. Development of PM2.5 monitoring technology and assurance of accurate measurement result[J]. Metrology & Measurement Technique, 2014, (2): 52-54(in Chinese).

[25] 温华洋, 徐光清, 张 虎, 等. 双套自动站数据评估及其优势探讨[J]. 应用气象学报, 2012, (6): 748-753.

    Wen Huayang, Xu Guangqing, Zhang Hu, et al. Data evaluation and the advantage of the double automatic weather stations[J]. Journal of Applied Meteorological Science, 2012, (6): 748-753(in Chinese).

[26] 柴岩红, 曹 兴, 张 军, 等. 乌鲁木齐地区自动与人工观测降雨量的差异及相关性分析[J]. 沙漠与绿洲气象, 2011, (5): 47-51.

    Chai Yanhong, Cao Xing, Zhang Jun, et al. Precipitation difference and relativity between automatic and conventional observation over Urumqi Region[J]. Desert and Oasis Meteorology, 2011, (5): 47-51(in Chinese).

[27] Met One Instruments, Inc. BAM 1020 Particulate Monitor Operation Manual, Revision B[Z]. 2001.

[28] 环境保护部. 中华人民共和国国家环境保护标准《环境空气颗粒物(PM10 和PM25)连续自动监测系统技术要求 及检测方法》(HJ 653-2013)[S]. 2013.

    Ministry of Environmental Protection of the People’s Republic of China. The people’s Republic of China State Environmental Protection Standard《Specifications and Test Procedures for Ambient Air Quality Continuous Automated Monitoring System for PM10 and PM2.5 》(HJ 653-2013)[S]. 2013(in Chinese).

[29] Draxler R R, Rolph G D. NOAA Air Resources Laboratory. HYSPLIT-HYbrid Single-Particle Lagrangian Integrated Trajectory Model[OL]. 2015, http://ready.arl. noaa.gov/HYSPLIT.php. Silver Spring, MD.

[30] Rolph G D. NOAA Air Resources Laboratory. READY- Real-time Environmental Applications and Display sYstem[OL]. 2015, http://ready.arl.noaa.gov. Silver Spring, MD.

张晓春, 赵亚南, 贾小芳. 膜采样与β射线法测定气溶胶PM2.5质量浓度的对比分析[J]. 大气与环境光学学报, 2015, 10(2): 149. 张晓春, 赵亚南, 贾小芳. Comparison and Analysis of Measurement of PM2.5 Between Filter-Based Sampling Method and β-Ray Attenuation Method[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 149.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!