光学学报, 2019, 39 (3): 0315001, 网络出版: 2019-05-10   

基于图像分割的稠密立体匹配算法 下载: 1086次

Dense Stereo Matching Algorithm Based on Image Segmentation
马瑞浩 1,2,3朱枫 1,3,*吴清潇 1,3鲁荣荣 1,3魏景阳 1,3
作者单位
1 中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
2 东北大学信息科学与工程学院, 辽宁 沈阳 110819
3 中国科学院光电信息处理重点实验室, 辽宁 沈阳 110016
引用该论文

马瑞浩, 朱枫, 吴清潇, 鲁荣荣, 魏景阳. 基于图像分割的稠密立体匹配算法[J]. 光学学报, 2019, 39(3): 0315001.

Ruihao Ma, Feng Zhu, Qingxiao Wu, Rongrong Lu, Jingyang Wei. Dense Stereo Matching Algorithm Based on Image Segmentation[J]. Acta Optica Sinica, 2019, 39(3): 0315001.

参考文献

[1] 范海瑞, 杨帆, 潘旭冉, 等. 一种改进Census变换与梯度融合的立体匹配算法[J]. 光学学报, 2018, 38(2): 0215006.

    范海瑞, 杨帆, 潘旭冉, 等. 一种改进Census变换与梯度融合的立体匹配算法[J]. 光学学报, 2018, 38(2): 0215006.

    Fan H R, Yang F, Pan X R, et al. Stereo matching algorithm for improved Census transform and gradient fusion[J]. Acta Optica Sinica, 2018, 38(2): 0215006.

    Fan H R, Yang F, Pan X R, et al. Stereo matching algorithm for improved Census transform and gradient fusion[J]. Acta Optica Sinica, 2018, 38(2): 0215006.

[2] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.

    Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.

[3] Taniai T, Matsushita Y, Sato Y, et al. Continuous 3D label stereo matching using local expansion moves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2725-2739.

    Taniai T, Matsushita Y, Sato Y, et al. Continuous 3D label stereo matching using local expansion moves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11): 2725-2739.

[4] 李晶皎, 马利, 王爱侠, 等. 基于改进Patchmatch及切片采样粒子置信度传播的立体匹配算法[J]. 东北大学学报(自然科学版), 2016, 37(5): 609-613.

    李晶皎, 马利, 王爱侠, 等. 基于改进Patchmatch及切片采样粒子置信度传播的立体匹配算法[J]. 东北大学学报(自然科学版), 2016, 37(5): 609-613.

    Li J J, Ma L, Wang A X, et al. Stereo matching algorithm based on improved patchmatch and slice sampling particle belief propagation[J]. Journal of Northeastern University(Natural Science), 2016, 37(5): 609-613.

    Li J J, Ma L, Wang A X, et al. Stereo matching algorithm based on improved patchmatch and slice sampling particle belief propagation[J]. Journal of Northeastern University(Natural Science), 2016, 37(5): 609-613.

[5] 祝世平, 李政. 基于改进梯度和自适应窗口的立体匹配算法[J]. 光学学报, 2015, 35(1): 0110003.

    祝世平, 李政. 基于改进梯度和自适应窗口的立体匹配算法[J]. 光学学报, 2015, 35(1): 0110003.

    Zhu S P, Li Z. A stereo matching algorithm using improved gradient and adaptive window[J]. Acta Optica Sinica, 2015, 35(1): 0110003.

    Zhu S P, Li Z. A stereo matching algorithm using improved gradient and adaptive window[J]. Acta Optica Sinica, 2015, 35(1): 0110003.

[6] 祝世平, 闫利那, 李政. 基于改进Census变换和动态规划的立体匹配算法[J]. 光学学报, 2016, 36(4): 0415001.

    祝世平, 闫利那, 李政. 基于改进Census变换和动态规划的立体匹配算法[J]. 光学学报, 2016, 36(4): 0415001.

    Zhu S P, Yan L N, Li Z. Stereo matching algorithm based on improved Census transform and dynamic programming[J]. Acta Optica Sinica, 2016, 36(4): 0415001.

    Zhu S P, Yan L N, Li Z. Stereo matching algorithm based on improved Census transform and dynamic programming[J]. Acta Optica Sinica, 2016, 36(4): 0415001.

[7] Liang ZF, Feng YL, Guo YL, et al. Learning deep correspondence through prior and posterior feature constancy[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2403- 2411.

    Liang ZF, Feng YL, Guo YL, et al. Learning deep correspondence through prior and posterior feature constancy[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2403- 2411.

[8] 肖进胜, 田红, 邹文涛, 等. 基于深度卷积神经网络的双目立体视觉匹配算法[J]. 光学学报, 2018, 38(8): 0815017.

    肖进胜, 田红, 邹文涛, 等. 基于深度卷积神经网络的双目立体视觉匹配算法[J]. 光学学报, 2018, 38(8): 0815017.

    Xiao J P, Tian H, Zou W T, et al. Stereo matching based on convolutional neural network[J]. Acta Optica Sinica., 2018, 38(8): 0815017.

    Xiao J P, Tian H, Zou W T, et al. Stereo matching based on convolutional neural network[J]. Acta Optica Sinica., 2018, 38(8): 0815017.

[9] MayerN, IlgE, HäusserP, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4040- 4048.

    MayerN, IlgE, HäusserP, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4040- 4048.

[10] Pang JH, Sun WX, Ren JS, et al. Cascade residual learning: a two-stage convolutional neural network for stereo matching[C]. IEEE International Conference on Computer Vision Workshops, 2017: 878- 886.

    Pang JH, Sun WX, Ren JS, et al. Cascade residual learning: a two-stage convolutional neural network for stereo matching[C]. IEEE International Conference on Computer Vision Workshops, 2017: 878- 886.

[11] Rhemann C, Hosni A, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.

    Rhemann C, Hosni A, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(2): 504-511.

[12] Yang QX. A non-local cost aggregation method for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1402- 1409.

    Yang QX. A non-local cost aggregation method for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2012: 1402- 1409.

[13] ZhangK, Fang YQ, Min DB, et al. Cross-scale cost aggregation for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1590- 1597.

    ZhangK, Fang YQ, Min DB, et al. Cross-scale cost aggregation for stereo matching[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1590- 1597.

[14] 刘艳, 李庆武, 霍冠英, 等. 结合局部二进制表示和超像素分割求精的立体匹配[J]. 光学学报, 2018, 38(6): 0615003.

    刘艳, 李庆武, 霍冠英, 等. 结合局部二进制表示和超像素分割求精的立体匹配[J]. 光学学报, 2018, 38(6): 0615003.

    Liu Y, Li Q W, Huo G Y, et al. Local binary description combined with superpixel segmentation refinement for stereo matching[J]. Acta Optica Sinica, 2018, 38(6): 0615003.

    Liu Y, Li Q W, Huo G Y, et al. Local binary description combined with superpixel segmentation refinement for stereo matching[J]. Acta Optica Sinica, 2018, 38(6): 0615003.

[15] 龚文彪, 顾国华, 钱惟贤, 等. 基于图像分割和自适应支撑权重的立体匹配算法[J]. 光学学报, 2015, 35(s2): s210002.

    龚文彪, 顾国华, 钱惟贤, 等. 基于图像分割和自适应支撑权重的立体匹配算法[J]. 光学学报, 2015, 35(s2): s210002.

    Gong W B, Gu G H, Qian W X, et al. Stereo matching algorithm based on image segmentation and adaptive support weight[J]. Acta Optica Sinica, 2015, 35(s2): s210002.

    Gong W B, Gu G H, Qian W X, et al. Stereo matching algorithm based on image segmentation and adaptive support weight[J]. Acta Optica Sinica, 2015, 35(s2): s210002.

[16] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

    Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.

[17] Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.

    Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.

[18] GuoH, OnoN, SagayamaS. A structure-synthesis image inpainting algorithm based on morphological erosion operation[C]. Congress on Image and Signal Processing, 2008: 530- 535.

    GuoH, OnoN, SagayamaS. A structure-synthesis image inpainting algorithm based on morphological erosion operation[C]. Congress on Image and Signal Processing, 2008: 530- 535.

[19] Jiao A S M, Tsang P W M, Poon T C. Restoration of digital off-axis Fresnel hologram by exemplar and search based image inpainting with enhanced computing speed[J]. Computer Physics Communications, 2015, 193: 30-37.

    Jiao A S M, Tsang P W M, Poon T C. Restoration of digital off-axis Fresnel hologram by exemplar and search based image inpainting with enhanced computing speed[J]. Computer Physics Communications, 2015, 193: 30-37.

[20] MeiX, SunX, Zhou MC, et al. On building an accurate stereo matching system on graphics hardware[C]. IEEE International Conference on Computer Vision Workshops, 2011: 467- 474.

    MeiX, SunX, Zhou MC, et al. On building an accurate stereo matching system on graphics hardware[C]. IEEE International Conference on Computer Vision Workshops, 2011: 467- 474.

[21] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.

    Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656.

[22] Scharstein D, Szeliski R. Middlebury stereo vision page[EB/OL]. ( 2017- 11- 15)[2018-12-03]. . http://vision.middlebury.edu/stereo/

    Scharstein D, Szeliski R. Middlebury stereo vision page[EB/OL]. ( 2017- 11- 15)[2018-12-03]. . http://vision.middlebury.edu/stereo/

马瑞浩, 朱枫, 吴清潇, 鲁荣荣, 魏景阳. 基于图像分割的稠密立体匹配算法[J]. 光学学报, 2019, 39(3): 0315001. Ruihao Ma, Feng Zhu, Qingxiao Wu, Rongrong Lu, Jingyang Wei. Dense Stereo Matching Algorithm Based on Image Segmentation[J]. Acta Optica Sinica, 2019, 39(3): 0315001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!