光子学报, 2014, 43 (8): 0823001, 网络出版: 2014-09-01   

多参量可调谐的Bragg波导光栅滤波器设计

Design of Multi-Parameter Tunable Bragg Waveguide Grating Filter
作者单位
天津理工大学 计算机与通信工程学院, 天津市薄膜电子与通信器件重点实验室, 天津 300384
摘要
为了解决基于光纤布喇格光栅和压电陶瓷结构的任意光脉冲整形器在动态调谐时存在不足的问题, 提出并设计了一种波长、相位、幅度参量独立可调的Bragg波导光栅滤波器, 以实现谐振波长及谐振波相位快速独立的线性调控.理论分析表明: 波长和相位的理论调谐效率分别为15.6 pm/V和0.2π/V, 滤波器的输出光强度可以通过偏振旋转器控制.基于转移矩阵理论的仿真分析发现: 该滤波器在蚀刻占空比为1/2时反射率最大, 光栅长度为10.869 mm, 蚀刻深度大于100 nm时, 可以获得98.4%以上的反射率和大于0.14 nm的带宽;增大波长调谐电压会进一步降低滤波带宽.
Abstract
In order to solve the problem of poor tuning performence of the optical arbitrary waveform generator based on fiber Bragg grating and piezoelectric transducer, a novel multi-parameter fast tunable Bragg grating filter on lithium niobate crystal was proposed. Theory analysis shows that its Bragg wavelength and corresponding phase is tunable in a linear way with wavelength tuning efficiency of 15.6 pm/V and phase tuning efficiency of 0.2 π/V, and the output light intensity of the filter is controlled by adjusting a polarization rotator also. Simulation results based on transfer matrix theory show that the maximum filtering reflectivity is achieved with the etching duty cycle 1/2, reflectivity more than 98.4% and bandwidth wider than 0.14 nm is obtained when etching depth is deeper than 100 nm on the condition of 10.87 mm grating length, and increasing the wavelength tuning voltage will further reduce the filter bandwidth.
参考文献

[1] DAS B K, SUCHE H, SHOLER W. Single-frequency Ti∶Er∶LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity[J]. Applied Physics B, 2001, 73(5/6): 39-442.

[2] CHOI S, EOM T J, JUNG Y, et al. Broad-band tunable all-fiber band-pass filter based on hollow optical fiber and long-period grating pair[J]. IEEE Photonics Technology Letters, 2005, 17(1): 115-117.

[3] KOCABAS A, AYDINLI A. Polymeric waveguide Bragg grating filter using soft lithography[J]. Optics Express, 2006, 14(22): 10228-10232.

[4] LIU Qing, CHANG K S, LOR K P. Temperature sensitivity of a long-period waveguide grating in a channel waveguide gratings[J]. Applied Physics Letters, 2005, 86(24): 241115(1-3).

[5] CHU Y M, CHIANG K S, LIU Qing. Widely tunable optical band-pass filter by use of polymer long-period waveguide gratings[J]. Applied Optics, 2006, 45(12): 2755-2760.

[6] GROBNIC D, MIHAILOV S J, SMELSER C W, et al. Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1453-1455.

[7] WANG Yi-ping, CHEN Jian-ping, LI Xin-wan, et al. Fast tunable electro-optic polymer waveguide gratings[J]. Acta Physica Sinica, 2005, 54(10): 4782-4788.

[8] ARIZMENDI L. Photonic applications of lithium niobate crystals[J]. Physic Status Solidi (a), 2004, 201(2): 253-283.

[9] PIERNO L, Dispenza M, SECCHI A. A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography[J]. Journal of Optics A: Pure Applied Optics, 2008, 10(6): 064017-3.

[10] JIN Wei, CHIANG K S, LIU Q. Analysis of lithium niobate electrooptic long-period waveguide grating[J]. Journal of Lightwave Technology, 2010, 28(10): 1477-1484.

[11] ZHANG Ai-ling, LI Chang-xiu. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays[J]. Optics Express, 2012, 20(21): 23074-23081.

[12] CAO Zhuang-qi. The transfer matrix method of optical waveguide[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.

[13] YEVICK D, HERMANSSON B. New formulations of the matrix beam propagation method : application to rib waveguides[J]. IEEE Journal of Quantum Electronic, 1989, 25(2): 221-229.

[14] ZHANG De-long, DING Gui-lan, CUI Ming-yu, et al. Proton exchanged LiNbO3 optical waveguide[J]. Progress in Physics, 2001, 2(1): 45-65.

张爱玲, 李玉祥. 多参量可调谐的Bragg波导光栅滤波器设计[J]. 光子学报, 2014, 43(8): 0823001. ZHANG Ai-ling, LI Yu-xiang. Design of Multi-Parameter Tunable Bragg Waveguide Grating Filter[J]. ACTA PHOTONICA SINICA, 2014, 43(8): 0823001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!