红外与毫米波学报, 2014, 33 (3): 248, 网络出版: 2014-06-30  

太阳能电池光载流子辐射复合的红外特性仿真与试验

Infrared radiation induced by photocarrier recombination in solar cells
作者单位
1 哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨150001
2 Center for Advanced Diffusion Wave Technologies (CADIFT), Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario MS5 3G8, Canada
摘要
激光诱发硅太阳能电池产生载流子,由于少数载流子的复合而发射红外辐射.基于一维载流子传输方程,建立了调制激光诱发PN结少数载流子密度模型,利用该模型仿真分析了载流子寿命、扩散率、表面复合率及光电压对辐射复合产生红外辐射信号的影响.利用InGaAs红外探测器(0.9~1.7μm)记录激光诱发载流子辐射复合的红外辐射信号,用数字锁相放大器提取了幅值与相位.通过频率扫描试验获得了多晶硅太阳能电池载流子传输参数.
Abstract
In silicon solar cells, carriers are generated under illumination of laser, and excess minority carriers emit infrared radiation via a radiative recombination process. A model for minority carrier density in a pn junction induced by modulated laser was developed based on 1D carrier transport equation of semiconductor. The influences of carrier lifetime, diffusion coefficient, surface recombination rate, and photovoltage on radiation recombination, thus on infrared radiation were investigated. The laser-induced photocarrier radiometry signal was monitored using an InGaAs detector (0.9~1.7μm). The amplitude and phase of infrared radiation were obtained by a digital lock-in amplifier. Carrier transport parameters of m-Si solar cell were obtained by frequency-scanning experiments.
参考文献

[1] MANDELIS A, ZHANG Yu. MELNIKOV A. Statistical theory and applications of lock-in carrierographic image pixel brightness dependence on multi-crystalline Si solar cell efficiency and photovoltage[J]. J. Appl. Phys, 2012, 112: 054505.

[2] YAN Ting-ting, ZHANG Guang-chun, LI Guo-hua, et al. Application of photoluminescence for the testing of defects in crystalline silicon based solar cells[J]. Semiconductor Technology, (严婷婷,张光春,李国华,等. 光致发光技术在检测晶体Si太阳电池缺陷的应用.半导体技术), 2010, 35(5): 454455.

[3] TRUPKE T, Bardos R A, Abbott M D .Suns-photoluminescence: Contactless determination of current-voltage characterstic of silicon wafers[J]. Appl. Phys. Letter, 2005, 87: 093503 .

[4] Schubert MC, PINGEL S, WARTA W. Quantitative carrier lifetime images optically measured on rough silicon wafers[J]. J. Appl. Phys, 2007, 101: 124907 .

[5] MANDELIS A, BATISTA J,SHAUGHNESSY D. Infrared photocarrier radiometry of semiconductors: Physical principles, quantitative depth profilometry, and scanning imaging of deep subsurface electronic defects[J]. PHYSICAL REVIEW B, 2003, 67: 205208.

[6] LI Bin-cheng, SHAUGHNESSY D, MANDELIS A, et al. Three-layer photocarrier radiometry model of ion-implanted silicon wafers[J]. J. Appl. Phys, 2004, 95 (12): 7832.

[7] Mandelis A. Diffusion-Wave Fields Mathematical Method and Green Functions[M]. New York: Springer, 2001,585595.

[8] FANRENBRUCH L, BUBE R H. Fundamentals of Solar Cells [M].New York: Academic, 1983, Chap. 3.

[9] NELSON J. The physics of solar cells [M]. London: Imperial College press, 2003, 105139.

[10] WURFEL P, WURFEL U. Physics of solar cells [M]. Weinheim: Wiley VCH, 2005.

[11] GUNDEL P, KWAPIL W, Schubert M C, et al. Approach to the physical origin of breakdown in silicon solar cells by optical spectroscopy[J]. Journal of Applied Physics, 2010, 108(12): 1237031237035.

[12] LIU Xian-ming, LI Bin-cheng, ZHANG Xi-ren. Photocarrier radiometric and ellipsometric characterization of ion-implanted silicon wafers [J]. Journal of Applied Physics, 2008, 103(12): 1237061237064.

刘俊岩, 秦雷, 龚金龙, 王扬, A. Mandelis. 太阳能电池光载流子辐射复合的红外特性仿真与试验[J]. 红外与毫米波学报, 2014, 33(3): 248. LIU Jun-Yan, QIN Lei, GONG Jin-Long, WANG Yang, A. Mandelis. Infrared radiation induced by photocarrier recombination in solar cells[J]. Journal of Infrared and Millimeter Waves, 2014, 33(3): 248.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!