光学 精密工程, 2019, 27 (2): 279, 网络出版: 2019-04-02   

偏振调制测距系统频率漂移误差及其补偿

Frequency drift error and its compensation in polarization modulation range-finding system
作者单位
1 合肥工业大学 仪器科学与光电工程学院, 安徽 合肥 230009
2 中国科学院 光电研究院 激光测量技术研究室, 北京 100094
3 华中科技大学 光学与电子信息学院, 湖北 武汉 430074
4 中国科学院大学, 北京100049
摘要
偏振调制测距方法中, 频率测量的稳定性是影响测距精度的关键因素。为提高偏振调制测距系统中频率测量精度, 提出一种双向扫频频率测量方法。分析了偏振调制测距原理及测频精度与测距精度的关系, 探讨了频率漂移量的影响因素和频率漂移规律, 证明调制深度和热致附加相位差是影响频率漂移的重要因素。利用正向扫频和反向扫频时频率漂移方向相反的特点, 提出频率漂移误差补偿方法, 可在低调制深度条件下补偿热致附加相位差引起的频率漂移。对距离为15.23 m的目标进行测量, 频率测量标准差从3.822 9×104 Hz减小到5.807 5×103 Hz, 测距误差从7.513 7 mm减小到0.866 7 mm, 验证了该方法的有效性。
Abstract
To improve the accuracy of frequency measurement in a polarization modulation range-finding system, a method based on dual-directional frequency sweep was proposed. First, the principle of the ranging method and the relationship between frequency and ranging stability were analyzed. Then, factors influencing frequency drift, as well as the changing law of drift in the system, were discussed, and it was proved that modulation depth and thermally induced additional phase delay are important factors affecting frequency drift. Accordingly, a compensation method was proposed to compensate for the frequency drift caused by additional thermal phase delay, which can be realized with low modulation depth. Experimental results show that, for the target at 15.23 m, the standard deviation of frequency measurement decreased from 3.822 9×104 Hz to 5.807 5×103 Hz, the ranging error decreased from 7.513 7 mm to 0.866 7 mm, and the validity of the method was verified.
参考文献

[1] 郭庭航. 基于光电振荡器的绝对距离测量方法研究 [D].天津: 天津大学, 2014.

    GUO T H. Research on Absolute Distance Measurement Based on Optoelectronic Oscillators [D]. Tianjin: Tianjin University, 2014.(in Chinese)

[2] 路程. 基于宽带扫频干涉的高精度绝对距离测量方法研究 [D].哈尔滨: 哈尔滨工业大学, 2017.

    LU CH. Research on High Precision Absolute Distance Measurement Based on Broadband and Frequency Scanning Interferometry [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)

[3] 杨金宝, 杨晨, 刘建国, 等. 基于目标特征尺寸的可视化被动测距系统 [J]. 光学 精密工程, 2018, 26(1): 245-252.

    YANG J B, YANG CH, LIU J G, et al.. Visual passive ranging system based on target feature size [J]. Opt. Precision Eng., 2018, 26(1): 245-252. (in Chinese)

[4] 周小珊, 李岩. 相位激光测距与外差干涉相结合的绝对距离测量研究 [J]. 应用光学, 2010, 31(6): 1013-1017.

    ZHOU X SH, LI Y. Absolute distance measurement by combining phase distance meter and heterodyne interferometer [J].Journal of Applied Optics, 2010, 31(6): 1013-1017.(in Chinese)

[5] 邱子胜, 杨馥, 叶星辰, 等. 基于伪随机码相位调制和相干探测的激光测距技术研究 [J]. 激光与光电子学进展, 2018, 55(5): 052801.

    QIU Z SH, YANG F, YE X CH, et al.. Research on laser ranging technology based on pseudo-random code phase modulation and coherent detection [J]. Laser & Optoelectronics Progress, 2018, 55(5): 052801. (in Chinese)

[6] 许贤泽, 翁名杰, 徐逢秋, 等. 正交调制降频相位式激光测距 [J]. 光学 精密工程, 2017, 25(8): 1979-1986.

    XU X Z, WENG M J, XU F Q, et al.. Phase laser ranger based on quadrature modem and frequency reduction [J]. Opt. Precision Eng., 2017, 25(8): 1979-1986. (in Chinese)

[7] 纪荣祎, 周维虎, 黎尧, 等. 激光跟踪仪高精度绝对测距系统 [J]. 光学 精密工程, 2016, 24(10s): 148-155.

    JI R Y, ZHOU W H, LI Y, et al.. High absolute distance measurement system of laser tracker [J]. Opt. Precision Eng., 2016, 24(10s): 148-155. (in Chinese)

[8] LI Y, HU K, JI R Y, et al.. Absolute distance measurement based on femtosecond frequency comb with wavelet transform [J]. Optical Engineering, 2014, 53(12): 122409.

[9] 周维虎, 石俊凯, 纪荣祎, 等.飞秒激光频率梳精密测距技术综述[J].仪器仪表学报, 2017, 38(8): 1859-1868.

    ZHOU W H, SHI J K, JI R Y, et al.. High-precision distance measurement using femtosecond laser frequency comb [J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1859-1868.(in Chinese)

[10] LI Y, SHI J K, Wang Y Q, et al.. Phase distortion correction in dual-comb ranging system [J]. Measurement Science & Technology, 2017, 28(7).

[11] 于佳禾, 师浩森, 宋有建, 等. 用于双飞秒激光高精度绝对测距的卡尔曼滤波算法研究 [J].中国激光, 2017, 44(6): 0610001.

    YU J H, SHI H S, SONG Y J, et al.. Study on Kalman filtering in high-precision absolute distance measurement based on dual femtosecond lasers [J]. Chinese Journal of Lasers, 2017, 44(6): 0610001.(in Chinese)

[12] 张雅雅, 郭寅, 任永杰, 等. 光频扫描干涉绝对测距漂移误差与补偿方法研究 [J]. 光学学报, 2017, 37(12): 185-192.

    ZHANG Y Y, GUO Y, REN Y J, et al.. Study of drift error and its compensation method in absolute distance measurement by optical frequency scanning interferometry [J]. Acta Optica Sinica, 2017, 37(12): 185-192. (in Chinese)

[13] 邾继贵, 郭庭航, 林嘉睿, 等. 光电振荡器测距方法中的纵模阶数测量 [J]. 中国激光, 2014, 41(3): 308004.

    ZHU J G, GUO T H, LIN J R, et al.. Mode number determination of distance measurement method based on optoelectronic oscillators [J]. Chinese Journal of Lasers, 2014, 41(3): 308004.(in Chinese)

[14] 黑克非, 于晋龙, 王菊, 等. 基于二次偏振调制的变频测距方法与系统实现 [J]. 物理学报, 2014, 63(10): 100602.

    HEI K F, YU J L, WANG J, et al.. Variable frequency range finding technology based on double polarization modulation method and system implementation [J]. Acta Phys. Sin., 2014, 63(10): 100602. (in Chinese)

[15] 肖洋, 于晋龙, 王菊, 等. 二次偏振调制测距系统中调制频率与测距精度的关系 [J]. 物理学报, 2016, 65(10): 100601.

    XIAO Y, YU J L, WANG J, et al.. Relationship between modulation frequency and range accuracy in the double polarization modulation range finding system [J]. Acta Physica Sinica, 2016, 65(10): 100601. (in Chinese)

[16] BRUNER A, EGER D, ORON M B, et al.. Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate [J]. Optics Letters, 2003, 28(3): 194-196.

[17] JUNDT D H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate [J]. Optics Letters, 1997, 22(20): 1553-1555.

[18] SIMA W, LIU T, YANG Q, et al.. Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation [J]. AIP Advances, 2016, 6(5): 055109.

高书苑, 黎尧, 纪荣祎, 石俊凯, 胡哲文, 周维虎. 偏振调制测距系统频率漂移误差及其补偿[J]. 光学 精密工程, 2019, 27(2): 279. GAO Shu-yuan, LI Yao, JI Rong-yi, SHI Jun-kai, HU Zhe-wen, ZHOU Wei-hu. Frequency drift error and its compensation in polarization modulation range-finding system[J]. Optics and Precision Engineering, 2019, 27(2): 279.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!