光学学报, 2014, 34 (1): 0123002, 网络出版: 2014-01-02   

红外波段十字阵列光吸收材料光学特性研究

Optical Properties of Cross-Shaped Array Optical Absorber in the Infrared Region
作者单位
西北工业大学空天微纳系统教育部重点实验室, 陕西 西安 710072
摘要
尺寸为光波长量级的微纳结构材料与电磁波的相互作用,使得其具有许多特殊的光学性能,金属电介质金属微纳结构具有电磁波完美吸收特性。基于S参数法,研究十字阵列光吸收材料在红外波段的光学特性参数,分析其谐振吸收机理及光学特性参数调谐性。研究结果表明,十字阵列单元尺寸对其等效光学参数具有调谐作用;当材料表面与入射介质之间满足阻抗匹配条件,以及等效折射率系数虚部值足够大时,可以有效提高其吸收率;经过结构优化的十字阵列光吸收材料在红外波段具有大于95%的吸收率,实验样件测试结果大于80%。十字结构臂长和电介质层厚度决定吸收谱特性,而十字结构臂宽仅仅影响吸收谱峰值大小。十字阵列光吸收材料在红外波段的完美吸收及光谱调谐性特点,使其可用于红外探测和光谱成像等领域。
Abstract
Metamaterials have many exotic optical properties due to the interaction between the electromagnetic wave and the nanostructures. Metamaterials (PAMs) with metal-dielectric-metal structure have perfect absorption characteristics. The optical parameters of a cross-shaped absorber in infrared band are retrieved by the S-parameters method. The mechanism of resonant absorption and optical tunability are studied. The experiments and simulations results indicate that the size of cross-shaped absorber can tune its effective optical parameters and can effectively increase its absorptivity on the conditions that the effective impedance matches well to the incident medium, and the imaginary part of the effective refractive index approaches as great value as possible. The absorptivity of optimized cross-shaped absorber is greater than 95% and maximum absorption of 80% is experimentally obtained in infrared region. The resonance peaks of the absorption spectrum depends on the length of the cross arm and thickness of the dielectric materials, while the width of the cross arm plays a critical role to the maximum absorption value. The characteristics of perfect absorption and spectral tenability of corss-shaped absorber make it promising in many applications, including infrared detection, spectral imaging and so on.
参考文献

[1] C Chang, H Chang, C Chen, et al.. Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays [J]. Appl Phys Lett, 2007, 91(16): 163107.

[2] 许中华, 方家熊. 近红外线列探测器传递函数测试系统[J]. 光学学报, 2012, 32(12): 1204001.

    Xu Zhonghua, Fang Jiaxiong. Modulation transfer function measurement of near infrared linear focal plane arrays [J]. Acta Optica Sinica, 2012, 32(12): 1204001.

[3] T Maier, H Brueckl. Multispectral microbolometers for the midinfrared [J]. Opt Lett, 2010, 35(22): 3766-3768.

[4] L Chang, R R Lunt, P R Brown, et al.. Low-temperature solution-processed solar cells based on PbS colloidal quantum Dot/CdS heterojunctions [J]. Nano Lett, 2013, 13(3): 994-999.

[5] X Liu, T Starr, A F Starr, et al.. Infrared spatial and frequency selective metamaterial with near-unity absorbance [J]. Phys Rev Lett, 2010, 104(20): 207403.

[6] 韩顺利, 张鹏. 基于红外热像波段拓展的多光谱成像研究[J]. 中国激光, 2012, 39(s1): s109004.

    Han Shunli, Zhang Peng. Research on multispectral imaging based on spectral band extension of infrared thermal image [J]. Chinese J Lasers, 2012, 39(s1): s109004.

[7] 程腾, 张青川, 高杰, 等. 光学读出非制冷红外成像技术的光学灵敏度分析[J]. 光学学报, 2012, 32(2): 0204002.

    Cheng Teng, Zhang Qingchuan, Gao Jie, et al.. Analysis of optical readout sensitivity for uncooled infrared imaging based on optical readout [J]. Acta Optica Sinica, 2012, 32(2): 0204002.

[8] C M Watts, X Liu, W J Padilla. Metamaterial electromagnetic wave absorbers [J]. Adv Mater, 2012, 24(23): 98-120.

[9] N I Landy, S Sajuyigbe, J J Mock, et al.. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100(20): 207402.

[10] D Y Shchegolkov, A K Azad, J F O′Hara, et al.. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers [J]. Phys Rev B, 2010, 82(20): 205117.

[11] X Liu, T Tyler, T Starr, et al.. Taming the blackbody with infrared metamaterials as selective thermal emitters [J]. Phys Rev Lett, 2011, 107(4): 045901.

[12] E C Kinzel, J C Ginn, R L Olmon, et al.. Phase resolved near-field mode imaging for the design of frequency-selective surfaces [J]. Opt Express, 2012, 20(11): 11986-11993.

[13] M Pu, M Wang, C Hu, et al.. Engineering heavily doped silicon for broadband absorber in the terahertz regime [J]. Opt Express, 2012, 20(23): 25513-25519.

[14] Y Ma, Q Chen, J Grant, et al.. A terahertz polarization insensitive dual band metamaterial absorber [J]. Opt Lett, 2011, 36(6): 945-947.

[15] D Schurig, J J Mock, B J Justice, et al.. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

[16] K Chen, R Adato, H Altug. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy [J]. ACS Nano, 2012, 6(9): 7998-8006.

[17] J Zhang, J-Y Ou, K F MacDonald, et al.. Optical response of plasmonic relief meta-surfaces [J]. J Opt, 2012, 14(11): 114002.

[18] L Huang, D R Chowdhury, S Ramani, et al.. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band [J]. Opt Lett, 2012, 37(2): 154-156.

[19] C R Simovski, S A Tretyakov. Local constitutive parameters of metamaterials from an effective-medium perspective [J]. Phys Rev B, 2007, 75(19): 195111.

[20] E D Palik. Handbook of Optical Constants of Solids [M]. Salt Lake City: Academic press, 1998.

[21] C Vieu, F Carcenac, A Pepin, et al.. Electron beam lithography: resolution limits and applications [J]. Appl Surf Sci, 2000, 164(1): 111-117.

[22] D R Smith, D C Vier, T Koschny, et al.. Electromagnetic parameter retrieval from inhomogeneous metamaterials [J]. Phys Rev E, 2005, 71(3): 036617.

[23] J Grant, Y Ma, S Saha, et al.. Polarization insensitive terahertz metamaterial absorber [J]. Opt Lett, 2011, 36(8): 1524-1526.

黎永前, 苏磊, 王斌斌, 郭勇君, 寿宸. 红外波段十字阵列光吸收材料光学特性研究[J]. 光学学报, 2014, 34(1): 0123002. Li Yongqian, Su Lei, Wang Binbin, Guo Yongjun, Shou Chen. Optical Properties of Cross-Shaped Array Optical Absorber in the Infrared Region[J]. Acta Optica Sinica, 2014, 34(1): 0123002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!