作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
光程吸收光谱技术是吸收光谱技术发展中的一个重要分支,近年来基于不同光源技术、吸收腔技术、探测方式的光程吸收光谱技术大量涌现。随着对探测灵敏度和吸收光程长度需求的提高,出现了基于增强吸收原理的光程吸收光谱技术,包括:积分腔光谱(ICOS)、腔增强吸收光谱(CEAS)和腔衰荡光谱(CRDS)。增强吸收光谱技术具有高光谱分辨率、高灵敏度、快速响应、便携等优势,但至今缺乏统一的概念和明确的分类依据。本文梳理了吸收光谱技术的发展历程,明确了多光程吸收光谱技术的概念。依据吸收腔内是否发生谐振吸收,提出了基于谐振原理的吸收光谱技术这一概念,分析总结了谐振吸收光谱技术的研究现状,并对这些技术在各领域的应用进行概述。最后,对谐振吸收光谱技术中关键技术的未来发展进行了展望。
光谱学 谐振吸收光谱技术 腔增强吸收光谱 腔衰荡光谱 spectroscopy resonance absorption spectroscopy cavity enhanced absorption spectroscopy cavity ring-down spectroscopy 
中国光学
2023, 16(6): 1273
作者单位
摘要
西北工业大学空天微纳系统教育部重点实验室, 陕西 西安 710072
尺寸为光波长量级的微纳结构材料与电磁波的相互作用,使得其具有许多特殊的光学性能,金属电介质金属微纳结构具有电磁波完美吸收特性。基于S参数法,研究十字阵列光吸收材料在红外波段的光学特性参数,分析其谐振吸收机理及光学特性参数调谐性。研究结果表明,十字阵列单元尺寸对其等效光学参数具有调谐作用;当材料表面与入射介质之间满足阻抗匹配条件,以及等效折射率系数虚部值足够大时,可以有效提高其吸收率;经过结构优化的十字阵列光吸收材料在红外波段具有大于95%的吸收率,实验样件测试结果大于80%。十字结构臂长和电介质层厚度决定吸收谱特性,而十字结构臂宽仅仅影响吸收谱峰值大小。十字阵列光吸收材料在红外波段的完美吸收及光谱调谐性特点,使其可用于红外探测和光谱成像等领域。
光学器件 完美吸收材料 散射参数 红外探测 谐振吸收 
光学学报
2014, 34(1): 0123002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!