许新玉 1,2周家成 2,*刘政 2杨群廷 2[ ... ]张为俊 1,2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院,安徽 合肥 230026
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
本文介绍了一种基于高精度比例积分微分(PID)温控的宽带腔增强大气二氧化氮(NO2)探测技术。系统选取中心波长为460 nm的LED光源作为探测光,入射端利用双胶合透镜的直接聚焦代替传统的光纤取样耦合,结合基长为322.4 mm的高灵敏度谐振腔,实现了小型化高精度的NO2监测。针对温度波动会引起LED光源光谱漂移及光强改变的问题,本文提出了一种改进型PID-卡尔曼滤波算法,实现了LED温度的快速稳定调节,耗时仅需~2 min,温度的波动范围是±0.015 ℃,极大降低了LED温漂对探测性能的影响。仪器性能评估结果显示,在~2.15 km的有效吸收光程下,实现了81×10-12的探测灵敏度(5 s,1σ);不同体积分数的NO2对比测试表明,本系统能准确测量大气NO2,进一步验证了系统的稳定性和准确性。
宽带腔增强吸收光谱 二氧化氮 比例积分微分温控 卡尔曼滤波 
光学学报
2023, 43(24): 2430001
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
光程吸收光谱技术是吸收光谱技术发展中的一个重要分支,近年来基于不同光源技术、吸收腔技术、探测方式的光程吸收光谱技术大量涌现。随着对探测灵敏度和吸收光程长度需求的提高,出现了基于增强吸收原理的光程吸收光谱技术,包括:积分腔光谱(ICOS)、腔增强吸收光谱(CEAS)和腔衰荡光谱(CRDS)。增强吸收光谱技术具有高光谱分辨率、高灵敏度、快速响应、便携等优势,但至今缺乏统一的概念和明确的分类依据。本文梳理了吸收光谱技术的发展历程,明确了多光程吸收光谱技术的概念。依据吸收腔内是否发生谐振吸收,提出了基于谐振原理的吸收光谱技术这一概念,分析总结了谐振吸收光谱技术的研究现状,并对这些技术在各领域的应用进行概述。最后,对谐振吸收光谱技术中关键技术的未来发展进行了展望。
光谱学 谐振吸收光谱技术 腔增强吸收光谱 腔衰荡光谱 spectroscopy resonance absorption spectroscopy cavity enhanced absorption spectroscopy cavity ring-down spectroscopy 
中国光学
2023, 16(6): 1273
作者单位
摘要
清华大学 能源与动力工程系,北京 100084
腔增强吸收光谱技术(CEAS)具有测量精度高、响应时间快、空间占用少等优势,在痕量气体检测与精密光谱测量中发挥了重要作用。本文结合计算与实验结果,阐明了腔增强技术对信号增强的共性原理及实验测量吸收系数的方法,进而介绍了几种具有代表性的腔增强吸收光谱技术,包括:相干光CEAS技术、非相干光CEAS技术及光梳相干宽带CEAS技术等。以此为基础对腔增强吸收光谱技术在大气污染检测、生物医疗传感、化学反应动力学诊断等方面的应用进行综述。最后对腔增强吸收光谱技术的未来发展进行了展望。
光学谐振腔增强 腔增强吸收光谱技术 痕量气体检测 光谱测量 大气组分传感 生物医学传感 化学反应动力学组分诊断 Optical resonant cavity enhancement Cavity enhanced absorption spectroscopy Trace gas detection Spectral measurement Atmospheric sensing Medical sensing Speciation for chemical kinetics 
光子学报
2023, 52(3): 0352102
作者单位
摘要
江苏师范大学物理与电子工程学院,江苏 徐州 221116
基于腔增强吸收光谱(CEAS)技术和波长调制光谱(WMS)技术,搭建了腔增强光谱测量系统,并采用该系统实现了CO体积分数的测量。实验中使用中心波长为2.3 μm的分布式反馈激光器作为光源,以反射率为99.8%的两片高反镜构建了基长为30 cm的光学腔,达到了147.15 m的有效吸收路径;在此基础上,利用4297.705 cm-1处的CO吸收谱线作为传感目标,实现了对CO的探测。利用CO体积分数不同的CO+N2的混合气体对系统的测量准确度进行验证,结果显示,测量值与参考值大小基本吻合,测量误差约为0.2%,证实了所搭建系统的测量准确性。利用体积分数为3×10-6的CO气体的二次谐波信号对系统的探测极限进行了分析,得到系统对CO的探测极限为138×10-9
光谱学 腔增强吸收光谱技术 波长调制光谱 CO气体 体积分数测量 
中国激光
2023, 50(13): 1311001
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技创新研究院前沿交叉技术研究中心,北京 100071
基于呼吸气体分析的疾病诊断技术,属于无损医学诊断研究范畴,是今后医学诊断的重要发展方向,将会在今后无损医学疾病诊断中发挥重要作用,尤其是在当下新冠疫情肆虐的背景下,对于无创、实时、准确性高的疾病诊断技术的需求更加迫切。针对呼吸气体诊断需求,在介绍腔增强吸收光谱技术基本原理和技术特点基础上,概述了腔增强呼吸气体诊断技术国内外发展历史及现状,并在归纳整理呼吸气体诊断特点的基础上,分析了今后腔增强呼吸气体诊断技术发展方向,可为后续技术的发展和应用提供参考。
光谱学 呼吸气体诊断 激光光谱技术 腔增强吸收光谱技术 光反馈 
激光与光电子学进展
2022, 59(19): 1900002
张海鹏 1,2郑凯元 1,2李俊豪 1,2刘梓迪 1,2[ ... ]王一丁 1,2
作者单位
摘要
1 吉林大学集成光电子学国家重点联合实验室, 电子科学与工程学院, 吉林 长春 130012
2 吉林省红外气体传感技术工程研究中心, 吉林 长春130012
为了有效抑制离轴积分腔输出光谱气体传感中存在的系统及腔模噪声并提高信噪比和气体检测灵敏度,在传统经验模态分解(EMD)方法的基础上,提出了一种改进型的EMD滤波算法。在对含噪信号进行分层分解的过程中,结合Savitzky-Golay(SG)滤波算法和互相关运算,利用滤波信号与互相关系数来得到重构滤波信号。利用甲烷气体样品开展的仿真和实验结果表明,采用EMD-SG滤波方法能显著提高信噪比,降低气体检测下限。与传统的小波去噪、卡尔曼滤波相比,EMD-SG滤波算法在处理系统噪声中的高斯白噪声成分和非线性、非平稳的随机噪声成分上具有明显的优势,实现了较好的滤波效果。经EMD-SG滤波算法处理后,吸收信号的信噪比提高了1.9倍,系统的检测下限由8.7×10 -6下降到4.6×10 -6。所提出的基于离轴积分腔输出光谱技术的EMD-SG滤波算法具有较高的信噪比和较好的去噪效果,有效提升了系统的检测性能,为研制低噪声离轴积分腔气体传感器并将其用于大气环境监测提供了方法和依据。
光谱学 离轴腔增强吸收光谱技术 经验模态分解 Savitzky-Golay滤波 信噪比 
光学学报
2021, 41(24): 2430002
作者单位
摘要
江苏师范大学物理与电子工程学院, 江苏 徐州 221116
腔增强吸收光谱技术具有实验装置相对简单、灵敏度高、环境适应性强等特点, 是高灵敏吸收光谱技术的重要分支之一, 在其应用过程中, 腔镜反射率是影响其测量准确性的重要因素。 利用2.0 μm可调谐二极管激光器作为光源搭建了一套腔增强吸收光谱测量系统, 使用两片反射率为99.9%的高反镜作为腔镜, 以CO2气体在5 001.49 cm-1处的吸收谱线作为研究目标, 对两种简单实用的腔镜反射率标定方法进行了对比研究。 第一种标定方法利用已知程长多通池作为参考池, 通过测量谐振腔和多通参考池的输出吸收信号, 比较二者的吸收率推导出腔增强系统中的有效吸收路径, 然后通过镜片反射率和有效吸收路径的关系对腔镜反射率进行标定; 第二种标定方法根据理想气体状态方程得到气体分子数密度, 并结合数据库中的谱线线强值, 实现了对腔镜反射率进行标定。 结果表明, 方法一中积分腔与参考池测得信号的积分吸收面积之比为10.5, 经过多次测量并计算得到积分腔的有效吸收路径与镜片的反射率分别为302.65 m和99.85%, 得到大气中CO2气体的浓度为0.037 3%, 与实际大气CO2的含量相符合, 验证了此方法的准确性; 该方法的优点是不受样品浓度影响, 但因引入新的参考池, 需要两池中气体的压强和温度都保持一致, 此方法适用于开放式的腔体结构。 方法二中测得大气中CO2分子位于5 001.49 cm-1处吸收光谱, 并结合大气中CO2气体的分子数密度N为9.099×1015 molecule·cm-3, Hitran数据库中该条谱线线强为3.902×10-22 cm·molecule-1, 计算得到镜片反射率约为99.84%; 此方法优点是结构相较前一种方法更简单, 但需要已知被测气体的分子数密度, 因此在配置气体的过程中浓度、压力的误差会影响腔镜反射率的标定。 由此可见两种镜片标定方法均可精确实现对腔镜反射率的标定, 根据两种方法的特点, 在实际应用中可选取相应适合的方法作为参考。
光谱学 腔增强吸收光谱 腔镜反射率 标定方法 Spectroscopy Cavity enhanced absorption spectroscopy Mirror reflectivity Calibration method 
光谱学与光谱分析
2021, 41(9): 2945
许非 1,2周晓彬 1,2刘政波 1,2赵刚 1,2,*马维光 1,2,*
作者单位
摘要
1 山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室, 山西太原030006
2 山西大学 极端光学协同创新中心,山西太原030006
腔增强吸收光谱技术(Cavity Enhanced Absorption Spectroscopy, CEAS)利用激光在腔镜之间的多次反射,增长光与气体介质的作用路径,从而提升探测灵敏度。CEAS的主要噪声来源于激光-腔耦合效率的低下和腔模幅度的起伏。光学反馈腔增强吸收光谱技术(OF-CEAS)基于光学反馈(Optical Feedback, OF)效应,将激光频率锁定到腔模频率上,提高了激光-腔的耦合效率。为了避免光学腔直接反射光引起光学反馈,传统的OF-CEAS大都采用三镜V型谐振腔。然而,实验发现当反馈相位控制恰当时,光学腔直接反射光并不会影响光学反馈,激光可以锁定到光学腔的谐振光上。因此,提出了基于线性F-P腔的OF-CEAS。利用透射腔模的对称性计算得到反馈相位控制的误差信号,实现了激光频率到连续101个腔模频率的锁定。最后对32×10-6 的甲烷标气进行检测,获得OF-CEAS吸收信号,评估得到的探测灵敏度可达0.54×10-6 (1σ)。
激光光谱 腔增强吸收光谱技术 分布反馈式半导体激光器 光学反馈 线性F-P腔 laser spectroscopy cavity-enhanced absorption spectroscopy Distributed Feedback-Diode Laser(DFB-DL) optical-feedback linear F-P cavity 
光学 精密工程
2021, 29(5): 933
作者单位
摘要
1 安徽理工大学人工智能学院, 安徽 淮南 232001
2 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 安徽科技学院, 安徽 凤阳 233100
非相干宽带腔增强吸收光谱技术(IBBCEAS)利用高精密谐振腔增强吸收光程, 实现对痕量气体的高灵敏探测。 目前, IBBCEAS技术主要采用发光二极管(LED)作为非相干光源。 当谐振腔镜片反射率曲线与带宽有限的LED辐射谱不能很好匹配时, 光谱反演波段选择不当可能会对被测气体浓度拟合结果产生较大偏差。 以定量探测大气NO2浓度为例, 分析了IBBCEAS光谱反演波段对NO2拟合结果的影响, 发现当反演波段宽度窄到一定程度后, NO2浓度拟合相对误差会迅速增加。 为此, 提出了一种基于RBF神经网络结合遗传算法的机器学习IBBCEAS光谱反演波段优化方法, 以使浓度拟合误差达到最小。 在430~480 nm待选波段内, 选择各种宽度和中心波长的子波段作为反演波段, 分别进行NO2浓度拟合, 以此获得435个样本数据, 并将样本数据按照4∶1比例分成学习样本和测试样本, 分别用于RBF神经网络学习训练和测试, 得到输入参数“反演波段的起始波长与截止波长”与输出参数“浓度拟合相对误差”之间的非线性映射关系。 使用遗传算法搜索最优反演波段, 将反演波段的起始波长和截止波长组合进行个体编码, 随机产生若干个体形成种群。 以RBF神经网络的输出(即浓度拟合相对误差)作为个体适应度, 经过多代种群进化过程后, 获得适应度最优个体, 即获得最优反演波段。 在种群规模为100个体, 种群进化最大代数为100的情况下, 当种群进化第61代时, 最优个体出现, 对应的最优适应度为3.584%, 最优反演波段为445.78~479.44 nm。 选择相同带宽的其他4个典型反演波段, 与最优反演波段下的NO2拟合结果进行了对比。 结果显示, 在最优反演波段下, 无论是拟合误差、 相对拟合误差还是拟合残差标准偏差, 均低于其他4个反演波段, 光谱拟合质量达到最优。 结果表明, 利用机器学习来确定IBBCEAS最优反演波段是可行的。
非相干宽带腔增强吸收光谱 优化 反演波段 机器学习 遗传算法 Incoherent broadband cavity enhanced absorption sp Optimization Retrieval range Machine learning Genetic algorithm 
光谱学与光谱分析
2021, 41(6): 1869
田兴 1,2,3曹渊 1,3王静静 1,3陈家金 1[ ... ]高晓明 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 安徽理工大学, 深部煤矿采动响应与灾害防控国家重点实验室, 安徽 淮南 232001
3 中国科学技术大学, 安徽 合肥 230026
H2O和CH4在气候变化过程中起着关键作用, 实时在线测量H2O和CH4浓度一直都是国内外学者研究的热点问题之一。 利用1.653 μm可调谐半导体激光器作光源, 结合反射率为99.997 6%的两片高反射镜组成离轴腔增强吸收光谱装置, 开展了H2O和CH4的高灵敏度测量研究。 离轴腔增强系统的有效吸收光程通过吸收面积-浓度关系法来标定, 吸收面积-浓度关系法的可行性首先通过已知光程的光学吸收池进行验证, 确定有效后用于标定离轴腔增强系统的有效光程。 结果表明, 基长为21 cm的离轴腔增强系统的有效吸收光程达到了8 626.3 m。 当谐振腔内压力为5.06 kPa时, 利用7组不同浓度的CH4标准气体(0.2~1.4 μmol·mol-1)对系统进行了线性响应标定测试, 得到了CH4吸收的积分面积与浓度拟合关系曲线。 系统的稳定性、 可实现的最小探测灵敏度等信息通过Allan方差进行分析, 结果表明系统对探测CH4的最佳平均时间为100 s, 最小可探测浓度极限为7.5 nmol·mol-1; 系统对探测H2O的最佳平均时间为200 s, 最小可探测浓度极限为55 μmol·mol-1。 对提高系统测量精度的数据处理方法也进行了分析研究, 结果表明相比于多次平均方法, Kalman滤波能显著的提高测量精度, 而且缩短了系统的响应时间。 最后, 利用搭建的离轴腔增强实验系统结合Kalman滤波数据处理方法对实际大气中CH4和H2O浓度进行了连续两天的测量, CH4每天平均的浓度分别为2.1和2.08 μmol·mol-1, H2O每天平均的浓度分别为11 515.6和11 628.6 μmol·mol-1, 由此可知建立的离轴腔增强吸收光谱装置能够用于大气CH4和H2O的测量, 另外建立的系统也可用于相关工业领域的高灵敏度CH4和H2O监测。
离轴腔增强吸收光谱 高灵敏度 最小可探测浓度极限 Kalman滤波 Off-axis cavity enhanced absorption spectroscopy High sensitivity Minimum detectable concentration limit Kalman filtering 
光谱学与光谱分析
2019, 39(10): 3078

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!