中国激光, 2007, 34 (4): 451, 网络出版: 2007-04-25   

基于视觉特性的真实影像再现技术进展及展望

New Progress and Prospect of Realistic Image Rendition Based on Visual Characteristics
作者单位
北京理工大学 信息科学技术学院光电工程系, 北京 100081
摘要
视觉特性研究的成果,融入到真实影像再现技术,可提供更适于人类观察的高品质图像,有利于机器视觉的研究。首先简单总结当前主要的视觉特性研究成果,包括视觉空间对抗、光谱对抗、视觉适应、视觉皮层初级处理等。综述了基于视觉特性的真实影像再现技术的研究动态和新进展,并根据算法的侧重点不同,分析了以保持颜色恒定性为主要目标的Retinex系列算法、各种动态范围压缩算法等。其中也涉及到已开展的部分工作,从原理分析、实验效果对比等角度,对研究成果与国外优秀算法做出评价。介绍了国外在软/硬件平台实现上的最新研究成果。简述进一步开展的工作及研究方向,并就其发展方向做出展望。
Abstract
Visual characteristics have been successfully applied to the study of realistic image rendition, which may provide higher quality images for human observation and machine vision. At first, the latest main researches on visual characteristics are briefly summarized, including visual spatial opponent, spectral opponent, visual adaptation, and visual cortex primary processing and so on. The development of realistic image rendition techniques based on visual characteristics is summarized in this paper. Since various algorithms have different emphases, the Retinex family methods primarily focusing on keeping color constancy and some other methods aiming at getting high dynamic range compression are analyzed in detail. Our study on this field is also mentioned and compared with some excellent algorithms according to theory structure and experiment results. Related representative software and hardware realization techniques are introduced, and our next research direction and the prospect on this field are given.
参考文献

[1] . H. Land, J. J. McCann. Lightness and retinex theory[J]. J. Opt. Soc. Am. A, 1971, 61(1): 1-11.

[2] . Tumblin, H. Rushmeier. Tone reproduction for realistuc images[J]. IEEE Computer Graphics and Applications, 1993, 13(6): 42-48.

[3] . High dynamic range image rendering with a retinex-based adaptive filter[J]. IEEE Trans. on Image Processing, 2006, 15(9): 2820-2830.

[4] . H. Brainard, B. A. Wandell. Analysis of the retinex theory of color vision[J]. J. Opt. Soc. Am. A, 1986, 3(10): 1651-1661.

[5] . T. Maloney. Evaluation of linear models of surface spectral reflectance with small numbers of parameters[J]. J. Opt. Soc. Am. A, 1986, 3(10): 1673-1683.

[6] . H. Land. The retinex theory of color vision[J]. Sci. Am., 1977, 237(6): 108-128.

[7] . Adelson. Compressing and companding high dynamic range images with subband architectures[J]. ACM Transactions on Graphics, 2005, 24(3): 836-844.

[8] E. H. Land. Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image [C]. Proc. Natl. Acad. Sci. USA, 1983, 80:5163~5169

[9] . J. McCann, S. P. McKee, T. H. Taylor. Quantitative studies in retinex theory[J]. Vision Research, 1976, 16: 445-458.

[10] . Hurlbert. Formal connection between lightness algorithms[J]. J. Opt. Soc. Am. A, 1986, 3(10): 1684-1693.

[11] . S. Livingstone, D. H. Hubel. Anatomy and physiology of a color system in the primate visual cortex[J]. J. Neurosci., 1984, 4(1): 309-356.

[12] . M. Zeki. Color coding in the cerebral cortex: the reaction of cells in the monkey visual cortex to wavelengths and colors[J]. J. Neurosci., 1983, 9(4): 741-765.

[13] . M. Zeki. The representation of colors in the cerebral cortex[J]. Nature, 1980, 284(5755): 412-418.

[14] E. H. Land. An alternative technique for the computation of the designator in the retinex theory of color vision [C]. Proc. Natl. Acad. Sci. USA, 1986, 83:3078~3080

[15] . Retinex in Matlab[J]. Journal of Electronic Imaging, 2004, 13(1): 48-57.

[16] J. J. McCann. Capturing a black cat in shade: the past and present of retinex color appearance models [C]. SPIE, 2002, 4662:331~340

[17] Robert Sobol. Improving the retinex algorithm for rendering wide dynamic range photographs [C]. SPIE, 2002, 4662:341~348

[18] . Moore, J. Allman, R. M. Goodman. A real-time neural system for color constancy[J]. IEEE Trans. Neural Networks, 1991, 2(2): 237-247.

[19] B. V. Funt, M. S. Drew, M. Brockington. Recovering shading from color images [C]. Proc. European Conference on Computer Vision (ECCV′92), 1992. 124~132

[20] Brian Funt, Florian Ciurea, John McCann. Tuning retinex parameters [C]. SPIE, 2002, 4662:358~366

[21] . Finlayson, Steven D. Hordley. Color constancy at a pixel[J]. J. Opt. Soc. Am. A, 2001, 18(2): 253-264.

[22] . J. Jobson, Z. Rahman, G. A. Woodell. Properties and performance of a center/surround retinex[J]. IEEE Trans. on Image Processing: Special Issue on Color Processing, 1997, 6(3): 451-462.

[23] . J. Jobson, Z. Rahman, G. A. Woodell. A multi-scale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Trans. on Image Processing: Special Issue on Color Processing, 1997, 6(7): 965-976.

[24] . Jobson, Glenn A. Woodell. Retinex processing for automatic image enhancement[J]. Journal of Electronic Imaging, 2004, 13(1): 100-110.

[25] Zia-ur Rahman, Daniel J. Jobson, Glenn A. Woodell et al.. Image enhancement, image quality, and noise [C]. SPIE, 2005, 5907:59070N-1~59070N-15

[26] Zia-ur Rahman, Daniel J. Jobson, Glenn A. Woodell. Multi-scale retinex for color image enhancement [C]. Proc. IEEE Intl. Conf. Image Process, 1996, (3):1003~1006

[27] Tatsumi Watanabe, Yasuhiro Kuwahara, Akio Kojima et al.. Improvement of color quality with modified linear multi-scale retinex [C]. SPIE, 2003, 5008:59~69

[28] S. Grossberg, E. Mingolla, J. Williamson. Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation [J]. Neural Networks, 1995, 8(7/8):1005~1028

[29] . Mingolla, W. Ross, S. Grossberg. A neural network for enhancing boundaries and surfaces in synthetic aperture radar images[J]. Neural Networks, 1999, 12(3): 499-511.

[30] . Grossberg, E. Mingolla. Visual brain and visual perception: how does the cortex do perceptual grouping[J]. Trends in Neuroscience, 1997, 20(3): 106-111.

[31] . Grossberg, R. D. S. Raizada. Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex[J]. Vision Research, 2000, 40(10): 1413-1432.

[32] . Color image enhancement using a multiple-scale opponent neural network[J]. Opt. Eng., 2004, 43(10): 2369-2380.

[33] . . A variational framework for retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7-23.

[34] Hau Ngo, Li Tao, Vijayan Asari. Design of an Efficient Architecture for Real-time Image Enhancement Based on a Luma-Dependent Nonlinear Approach [C]. Proc. of the International Conference on Information Technology: Coding and Computing (ITCC′04), 2004, 1:656~660

[35] Xu Daoyi, Li Yunru. Color image enhancement using hybrid retinex algorithm [D]. Master′s Thesis of Shih Hsin Unviersity, 2005, 7:38~54
徐道义,李昀儒. 改良式Retinex的色彩影像强化研究[D]. 世新大学硕士论文, 2005, 7:38~54

[36] Xu Daoyi, Li Yunru, Xu Daoren. An innovative color enhancement utilizing human visulized system [J]. Journal of CAGST, 2005. 23~35
徐道义,李昀儒,徐道仁. 以人眼具区域性弹性调整特性的彩色影像的显像方法之探讨[J]. 中华印刷科技年报, 2005. 23~35

[37] Jeffrey M. DiCarlo, Brian A. Wandell. Rendering high dynamic range images [C]. SPIE, 2000, 3965:392~401

[38] Patrick Ledda. Development of a Perceptual Tone Mapping Operator [ OL]. University of Bristol, http://aris-ist.intranet.gr/documents/Tone%20Mapping%20and%20High%20Dinamic%20Range%20Imaging.pdf

[39] . Battiato, A. Castorina, M. Mancuso. High dynamic range imaging for digital still camera: an overview[J]. Journal of Electronic Imaging, 2003, 12(3): 459-469.

[40] James A. Ferwerda, Sumanta N. Pattanaik, Peter Shirley et al.. A model of visual adaptation for realistic image synthesis [J]. Computer Graphics, SIGGRAPH 1996. 249~258

[41] . Ward Larson, H. Rushmeier, C. Piatko. A visibility matching tone reproduction operator for high dynamic range scenes[J]. IEEE Trans. on Visualization and Computer Graphics, 1997, 3(4): 291-306.

[42] . M. Courtney, L. H. Finkel, G. Buchsbaum. A multistage neural network for color constancy and color induction[J]. IEEE Trans. on Neural Networks, 1995, 6(4): 972-985.

[43] H. Spitzer, S. Semo. A Biological Color Constancy Model and Its Application for Real Images [C]. International Conf. Color in Graphics and Image Processing-CGIP, 2000. 27~32

[44] S. N. Pattanaik, J. Ferwerda, M. D. Fairchild et al.. A multiscale model of adaptation and spatial vision for realistic image display [J]. Computer Graphics, SIGGRAPH 1998. 287~298

[45] . Dynamic range reduction inspired by photoreceptor physiology[J]. IEEE Trans. on Visualization and Computer Graphics, 2005, 11(1): 13-24.

[46] . Adelson. Compressing and companding high dynamic range images with subband architectures[J]. ACM Transactions on Graphics, 2005, 24(3): 836-844.

[47] Patrick Ledda, Luis Paulo Santos, Alan Chalmers. A local model of eye adaptation for high dynamic range images [C]. Proc. of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, 2004. 151 ~ 160

[48] Patrick Ledda, Alan Chalmers, Helge Seetzen. HDR displays: a validation against reality [C]. IEEE International Conference on Systems, Man and Cybernetics, 2004, 3:2777~2782

[49] Huang Guanghua, Ni Guoqiang. A realistic image rendition method based on the cone adaption model [J]. Journal of Image and Graphics (to be published)
黄光华,倪国强. 一种基于视锥适应模型的真实影像再现方法[J]. 中国图象图形学报(待发表)

[50] . Levine. Visual information processing in primate cone pathways—part Ⅰ: a model[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(2): 259-274.

[51] Glenn Woodell, Zia-ur Rahman, Daniel J. Jobson et al.. Enhanced images for checked and carry-on baggage and cargo screening [C]. SPIE, 2004, 5403:582~589

[52] . High dynamic range compression on programmable graphics hardware[J]. Microcomputer Development, 2005, 15(9): 154-157.

[53] L. Fanucci, M. Cassiano, S. Saponara et al.. ASIP design and synthesis for non linear filtering in image processing [C]. Proceedings of Design, Automation and Test in Europe, 2006, 2:1~6

[54] Kobus Barnard, Graham Finlayson, Brian Funt. Colour constancy for scenes with varying illumination [C]. ECCV′96 Fourth European Conference on Computer Vision, 1996, 2:3~15

[55] . . A visual/IR color image fusion based on rattlesnake bionodal cell neurodynamics: advances and prospects[J]. Journal of Beijing Institute of Technology, 2004, 24(2): 95-100.

[56] Ni Guoqiang. Image fusion technology and its new development [J]. Laser & Infrared, 2005, 35(11):817~821
倪国强. 基于视觉神经动力学的图像融合与处理技术若干新进展[J]. 激光与红外, 2005, 35(11):817~821

倪国强, 肖蔓君, 胡宏清, 陈思颖, 黄光华. 基于视觉特性的真实影像再现技术进展及展望[J]. 中国激光, 2007, 34(4): 451. 倪国强, 肖蔓君, 胡宏清, 陈思颖, 黄光华. New Progress and Prospect of Realistic Image Rendition Based on Visual Characteristics[J]. Chinese Journal of Lasers, 2007, 34(4): 451.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!