Photonics Research, 2020, 8 (3): 03000352, Published Online: Feb. 21, 2020  

Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform Download: 775次

Author Affiliations
1 Centre for Nanoscience and Nanotechnology (C2N), CNRS, Université Paris-Sud, Université Paris-Saclay, UMR 9001, 91405 Orsay Cedex, France
2 Technologie R&D, STMicroelectronics, SAS, 850 rue Jean Monnet, 38920 Crolles, France
3 III-V lab, a joint venture from Nokia Bell Labs, Thales and CEA, 1 Avenue Augustin Fresnel, 91767 Palaiseau Cedex, France
Copy Citation Text

Christian Lafforgue, Sylvain Guerber, Joan Manel Ramirez, Guillaume Marcaud, Carlos Alonso-Ramos, Xavier Le Roux, Delphine Marris-Morini, Eric Cassan, Charles Baudot, Frédéric Boeuf, Sébastien Cremer, Stéphane Monfray, Laurent Vivien. Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform[J]. Photonics Research, 2020, 8(3): 03000352.

References

[1] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 2006, 78: 1135-1184.

[2] L. Froehly, J. Meteau. Supercontinuum sources in optical coherence tomography: a state of the art and the application to scan-free time domain correlation techniques and depth dependent dispersion compensation. Opt. Fiber Technol., 2012, 18: 411-419.

[3] T. Udem, R. Holzwarth, T. Hänsch. Optical frequency metrology. Nature, 2002, 416: 233-237.

[4] C. Kaminski, R. Watt, A. Elder, J. Frank, J. Hult. Supercontinuum radiation for applications in chemical sensing and microscopy. Appl. Phys. B, 2008, 92: 367-378.

[5] X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W-1m-1 at 1550 nm. Opt. Express, 2010, 18: 18866-18874.

[6] J. J. Pigeon, S. Y. Tochitsky, C. Gong, C. Joshi. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses. Opt. Lett., 2014, 39: 3246-3249.

[7] J. Chiles, N. Nader, E. J. Stanton, D. Herman, G. Moody, J. Zhu, J. C. Skehan, B. Guha, A. Kowligy, J. T. Gopinath, K. Srinivasan, S. A. Diddams, I. Coddington, N. R. Newbury, J. M. Shainline, S. W. Nam, R. P. Mirin. Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 2019, 6: 1246-1254.

[8] N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, N. Fahrenkopf, C. Baiocco, B. L. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, M. R. Watts. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06  μm to beyond 2.4  μm. Light Sci. Appl., 2018, 7: 17131.

[9] M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J.-M. Hartmann, J.-M. Fedeli, C. Grillet. Mid-infrared octave spanning supercontinuum generation to 8.5  μm in silicon-germanium waveguides. Optica, 2018, 5: 360-366.

[10] B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. W. Hänsch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun., 2015, 6: 6310.

[11] R. K. W. Lau, M. R. E. Lamont, A. G. Griffith, Y. Okawachi, M. Lipson, A. L. Gaeta. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett., 2014, 39: 4518-4521.

[12] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire. Optica, 2015, 2: 797-802.

[13] N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, S. Diddams. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy. APL Photon., 2018, 3: 036102.

[14] N. Nader, A. Kowligy, J. Chiles, E. J. Stanton, H. Timmers, A. J. Lind, F. C. Cruz, D. M. B. Lesko, K. A. Briggman, S. W. Nam, S. A. Diddams, R. P. Mirin. Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 2019, 6: 1269-1276.

[15] L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 2013, 3: 247-268.

[16] K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express, 2008, 16: 12987-12994.

[17] H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, R. Baets. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 2015, 40: 2177-2180.

[18] M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, K.-J. Boller. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express, 2017, 25: 1542-1554.

[19] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 2015, 40: 5117-5120.

[20] J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, C. Fallnich, K.-J. Boller. On-chip visible-to-infrared supercontinuum generation with more than 495  THz spectral bandwidth. Opt. Express, 2015, 23: 19596-19604.

[21] D. R. Carlson, D. D. Hickstein, A. Lind, S. Droste, D. Westly, N. Nader, I. Coddington, N. R. Newbury, K. Srinivasan, S. A. Diddams, S. B. Papp. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett., 2017, 42: 2314-2317.

[22] E. Baumann, E. V. Hoenig, E. F. Perez, G. M. Colacion, F. R. Giorgetta, K. C. Cossel, G. Ycas, D. R. Carlson, D. D. Hickstein, K. Srinivasan, S. B. Papp, N. R. Newbury, I. Coddington. Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics. Opt. Express, 2019, 27: 11869-11876.

[23] A. J. Metcalf, T. Anderson, C. F. Bender, S. Blakeslee, W. Brand, D. R. Carlson, W. D. Cochran, S. A. Diddams, M. Endl, C. Fredrick, S. Halverson, D. D. Hickstein, F. Hearty, J. Jennings, S. Kanodia, K. F. Kaplan, E. Levi, E. Lubar, S. Mahadevan, A. Monson, J. P. Ninan, C. Nitroy, S. Osterman, S. B. Papp, F. Quinlan, L. Ramsey, P. Robertson, A. Roy, C. Schwab, S. Sigurdsson, K. Srinivasan, G. Stefansson, D. A. Sterner, R. Terrien, A. Wolszczan, J. T. Wright, G. Ycas. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica, 2019, 6: 233-239.

[24] P. Manurkar, E. F. Perez, D. D. Hickstein, D. R. Carlson, J. Chiles, D. A. Westly, E. Baumann, S. A. Diddams, N. R. Newbury, K. Srinivasan. Fully self-referenced frequency comb consuming 5 watts of electrical power. OSA Continuum, 2018, 1: 274-282.

[25] D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, S. B. Papp. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl., 2017, 8: 014027.

[26] A. S. Kowligy, D. D. Hickstein, A. Lind, D. R. Carlson, H. Timmers, N. Nader, D. L. Maser, D. Westly, K. Srinivasan, S. B. Papp, S. A. Diddams. Tunable mid-infrared generation via wide-band four-wave mixing in silicon nitride waveguides. Opt. Lett., 2018, 43: 4220-4223.

[27] D. Martyshkin, V. Fedorov, T. Kesterson, S. Vasilyev, H. Guo, J. Liu, W. Weng, K. Vodopyanov, T. J. Kippenberg, S. Mirov. Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide. Opt. Mater. Express, 2019, 9: 2553-2559.

[28] D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, C.-S. Brès. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nat. Commun., 2019, 10: 1553.

[29] H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. Pfeiffer, W. Weng, C.-S. Brès, T. Kippenberg. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics, 2018, 12: 330-335.

[30] A. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. Lamont, Y. Okawachi, M. Lipson, A. Gaeta, U. Keller. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express, 2015, 23: 15440-15451.

[31] Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, A. L. Gaeta. Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide. Opt. Lett., 2018, 43: 4627-4630.

[32] A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, U. Keller. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt. Express, 2016, 24: 11043-11053.

[33] J. Chiles, N. Nader, D. D. Hickstein, S. P. Yu, T. C. Briles, D. Carlson, H. Jung, J. M. Shainline, S. Diddams, S. B. Papp, S. W. Nam, R. P. Mirin. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett., 2018, 43: 1527-1530.

[34] T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, D. T. H. Tan. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides. Laser Photon. Rev., 2015, 9: 498-506.

[35] H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, C. Sciancalepore. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics. Appl. Phys. Lett., 2018, 113: 081102.

[36] T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, F. Y. Gardes. Material and optical properties of low-temperature NH3-free PECVD SiN x layers for photonic applications. J. Phys. D, 2016, 50: 025106.

[37] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 2015, 40: 4823-4826.

[38] Q. Lin, O. J. Painter, G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express, 2007, 15: 16604-16644.

[39] J. Hult. A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol., 2007, 25: 3770-3775.

[40] S. Roy, S. K. Bhadra, G. P. Agrawal. Effects of higher-order dispersion on resonant dispersive waves emitted by solitons. Opt. Lett., 2009, 34: 2072-2074.

[41] R. Paschotta. Noise of mode-locked lasers (part I): numerical model. Appl. Phys. B, 2004, 79: 153-162.

[42] A. Ruehl, M. J. Martin, K. C. Cossel, L. Chen, H. McKay, B. Thomas, C. Benko, L. Dong, J. M. Dudley, M. E. Fermann. Ultrabroadband coherent supercontinuum frequency comb. Phys. Rev. A, 2011, 84: 011806.

Christian Lafforgue, Sylvain Guerber, Joan Manel Ramirez, Guillaume Marcaud, Carlos Alonso-Ramos, Xavier Le Roux, Delphine Marris-Morini, Eric Cassan, Charles Baudot, Frédéric Boeuf, Sébastien Cremer, Stéphane Monfray, Laurent Vivien. Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform[J]. Photonics Research, 2020, 8(3): 03000352.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!