发光学报, 2017, 38 (3): 288, 网络出版: 2017-04-10   

基于InP@ZnS QDs/Dured纳米荧光探针的DNA检测

InP@ZnS QDs/Dured Fluorescent Nanoprobe for The Detection of DNA
作者单位
1 东南大学生物科学与医学工程学院 生物电子学国家重点实验室, 江苏 南京 210096
2 黔南民族医学高等专科学校, 贵州 都匀 558000
摘要
利用巯基丙酸包覆的InP@ZnS 量子点(QDs)与Dured构建了一种检测DNA的荧光探针。在该探针中, 以环境友好型带负电的InP@ZnS量子点为荧光团, 与带正电的Dured通过静电结合, 构建了InP@ZnS QDs/Dured纳米荧光探针。通过荧光共振能量转移(FRET)机理, 量子点荧光被猝灭; 当DNA存在时, Dured与DNA的特异性结合使Dured从InP@ZnS QDs表面脱附, FRET过程被打断, InP@ZnS QDs荧光恢复, 以荧光“关-开”方式检测DNA。该探针检测DNA的线性范围为2.0~275.0 ng·L-1, 检测限为1.0 ng·L-1, 并可用于模拟生物生理条件下的DNA检测。
Abstract
The fluorescent nanoprobe for the detection of DNA was established by utilizing mercaptopropionic acid coated InP@ZnS QDs and Dured. In this nanoprobe. The InP@ZnS QDs/Dured fluorescent nanoprobes were structured by electrostatic interactions between environment friendly, negatively charged InP@ZnS quantum dots and positively charged Dured, and then the fluorescence of InP@ZnS QDs/Dured was quenched through fluorescence resonance energy transfer (FRET). At presence of DNA, DNA and Dured were specific binding, which enable Dured removing from the surface of InP@ZnS QDs and achieving fluorescence recovery of InP@ZnS QDs. Thus, the detection of DNA was realized. The linear range of the InP@ZnS QDs/Dured fluorescent nanoprobes for DNA detection and the detection limit were 2.0-275.0 ng·L-1 and 1.0 ng·L-1, respectively. The InP@ZnS QDs/Dured fluorescent nanoprobes can be also used in rapid detection of DNA under simulated physiological conditions.
参考文献

[1] BRUCHEZ Jr M, MORONNE M, GIN P, et al.. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385):2013-2016.

[2] HU X Y, ZHU K, GUO Q S, et al.. Ligand displacement-induced fluorescence switch of quantum dots for ultrasensitive detection of cadmium ions[J]. Anal. Chim. Acta, 2014, 812:191-198.

[3] CLAPP A R, MEDINTZ I L, MAURO J M, et al.. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors[J]. J. Am. Chem. Soc., 2004, 126(1):301-310.

[4] 王国庆, 陈兆鹏, 陈令新. 基于核酸适配体和纳米粒子的光学探针[J]. 化学进展, 2010, 22(2-3):489-499.

    WANG G Q, CHEN Z P, CHEN L X. Aptamer-nanoparticle-based optical probes[J]. Prog. Chem., 2010, 22(2-3):489-499. (in Chinese)

[5] BIJU V, ITOH T, ISHIKAWA M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging[J]. Chem. Soc. Rev., 2010, 39(8):3031-3056.

[6] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251):933-937.

[7] PENG X G, MANNA L, YANG W D, et al.. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404(6773):59-61.

[8] BURDA C, CHEN X B, NARAYANAN R, et al.. Chemistry and properties of nanocrystals of different shapes[J]. Chem. Rev., 2005, 105(4):1025-1102.

[9] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. J. Am. Chem. Soc., 2001, 123(1):183-184.

[10] LI L, QIAN H F, REN J C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature[J]. Chem. Commun., 2005(4):528-530.

[11] 邹函君, 曹渊, 徐彦芹, 等. 荧光量子点及其在生物检测中的应用[J]. 化学通报, 2012, 75(3):209-215.

    ZOU H J, CAO Y, XU Y Q, et al.. Fluorescent quantum dots and their application in biological detection[J]. Chemistry, 2012, 75(3):209-215. (in Chinese)

[12] MA Q, SU X G. Near-infrared quantum dots: synthesis, functionalization and analytical applications[J]. Analyst, 2010, 135(8):1867-1877.

[13] BHARALI D J, LUCEY D W, JAYAKUMAR H, et al.. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy[J]. J. Am. Chem. Soc., 2005, 127(32):11364-11371.

[14] YONG K T, DING H, ROY I, et al.. Imaging pancreatic cancer using bioconjugated InP quantum dots[J]. ACS Nano, 2009, 3(3):502-510.

[15] BRUNETTI V, CHIBLI H, FIAMMENGO R, et al.. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment[J]. Nanoscale, 2013, 5(1):307-317.

[16] 刘军, 罗国安, 王义明, 等. 小分子与核酸相互作用的研究进展[J]. 药学学报, 2001, 36(1):74-78.

    LIU J, LUO G A, WANG Y M, et al.. Research development of the interaction of small molecules with nucleic acids[J]. Acta Pharm. Sinica, 2001, 36(1):74-78. (in Chinese)

[17] 王兴明, 黎泓波, 胡亚敏, 等. 苏木素与DNA相互作用的光谱研究[J]. 化学学报, 2007, 65(2):140-146.

    WANG X M, LI H B, HU Y M, et al.. Study on the interaction between hematoxylin and DNA by spectrometry[J]. Acta Chim. Sinica, 2007, 65(2):140-146. (in Chinese)

[18] 俞英, 吴霖, 谭丽贤. 碱性品红荧光法测定脱氧核糖核酸及其机理的研究[J]. 分析化学, 2004, 32(5):628-632.

    YU Y, WU L, TAN L X. Fluorimetric determination of deoxyribonucleic acid with rosaniline as the probe and its reaction mechanism[J]. Chin. J. Anal. Chem., 2004, 32(5):628-632. (in Chinese)

[19] RILEY J, JENNER D, SMITH J C, et al.. Rapid determination of DNA concentration in multiple samples[J]. Nucleic Acids Res., 1989, 17(20):8383.

[20] HE S J, SONG B, LI D, et al.. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Adv. Funct. Mater., 2010, 20(3):453-459.

[21] ZHU K, HU X Y, GE Q Y, et al.. Fluorescent recognition of deoxyribonucleic acids by a quantum dot/meso-tetrakis(N-methylpyridinium-4-yl)porphyrin complex based on a photo induced electron-transfer mechanism[J]. Anal. Chim. Acta, 2014, 812:199-205.

[22] ZHANG L, ZHU K, DING T, et al.. Quantum dot-phenanthroline dyads: detection of double-stranded DNA using a photoinduced hole transfer mechanism[J]. Analyst, 2013, 138(3):887-893.

[23] 司芳瑞, 苗艳明, 杨茂青, 等. 基于MPA包覆的Mn掺杂ZnS量子点/米托蒽醌复合体系对DNA的检测[J]. 发光学报, 2016, 37(1):13-21.

    SI F R, MIAO Y M, YANG M Q, et al.. Detection of DNA based on manganese-doped ZnS quantum dots/MTX composite system[J]. Chin. J. Lumin., 2016, 37(1):13-21. (in Chinese)

[24] 龚会平, 刘绍璞, 殷鹏飞, 等. 荧光可逆调控研究CdTe量子点-吖啶橙-小牛胸腺DNA的相互作用及分析应用[J]. 化学学报, 2011, 69(23):2843-2850.

    GONG H P, LIU S P, YIN P F, et al.. Study on the interaction between CdTe quantum dot-acridine orange-calf thymus DNA by fluorescence reversible control[J]. Acta Chim. Sinica, 2011, 69(23): 2843-2850. (in Chinese)

[25] 徐靖, 赵应声, 王洪梅, 等. 应用水相合成的CdTePCdS核壳型量子点荧光探针测定DNA[J]. 分析试验室, 2006, 25(4):50-53.

    XU J, ZHAO Y S, WANG H M, et al.. Application of CdTePCdS core-shell quantum dots synthesized in an aqueous solution as fluorescence probe in the determination of nucleic acids[J]. Chin. J. Anal. Lab., 2006, 25(4):50-53. (in Chinese)

[26] LIU Y H, TSAI Y Y, CHIEN H J, et al.. Quantum-dot-embedded silica nanotubes as nanoprobes for simple and sensitive DNA detection[J]. Nanotechnology, 2011, 22(15):155102-1-7.

[27] 时姗姗, 章如松, 马恒辉, 等. 介绍一种新型的核酸染料DuRed[J]. 诊断病理学杂志, 2015, 22(2):122.

    SHI S S, ZHANG R S, MA H H, et al.. DuRed—A novel nucleic acid dye[J]. J. Diag. Pathol., 2015, 22(2):122. (in Chinese)

[28] HUANG Q, BAUM L, FU W L. Simple and practical staining of DNA with GelRed in agarose gel electrophoresis[J]. Clin. Lab., 2010, 56(3-4):149-152.

[29] XIE R, BATTAGLIA D, PENG X. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared[J]. J. Am. Chem. Soc., 2007, 129(50):15432-15433.

胡先运, 孟铁宏, 张汝国, 江家志, 黄星宏. 基于InP@ZnS QDs/Dured纳米荧光探针的DNA检测[J]. 发光学报, 2017, 38(3): 288. HU Xian-yun, MENG Tie-hong, ZHANG Ru-guo, JIANG Jia-zhi, HUANG Xing-hong. InP@ZnS QDs/Dured Fluorescent Nanoprobe for The Detection of DNA[J]. Chinese Journal of Luminescence, 2017, 38(3): 288.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!