光学学报, 2015, 35 (10): 1030001, 网络出版: 2015-10-08  

线性分子摆动光谱Q支相对强度与电场、分子取向度的依赖关系及其应用

Dependence of Q-Branch Intensity of Pendular State Molecules on Electric Field and Molecular Orientation and Their Applications
作者单位
华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
摘要
提出了一种测量分子取向度的新方法,即采用极性线性分子的摆动光谱Q 支相对强度来测量分子的取向度。通过计算极性分子HCN-N2电子基态的C—H 伸缩振动在不同电场强度下的摆动光谱,发现其摆动光谱的Q 支强度随着电场强度的增大而逐渐增大,但P支与R 支强度则随着电场强度的增大相应地减小,因此可以利用摆动光谱的Q 支相对强度(即Q 支光谱强度与P,Q,R 支光谱总强度的比值)来表示电场强度的大小。同时,计算了电场强度大小与分子取向度的关系,发现分子取向度随电场强度的增大而逐渐增大。通过进一步计算,给出了分子取向度与其摆动光谱的Q 支相对强度的关系,并提出采用摆动光谱的Q 支相对强度实现分子取向度测量的新方法。
Abstract
A new method to measure the orientation of cold polar linear molecules using the relative intensity of the Q branch spectrum of the pendular state of linear molecules is presented. The relationship between the orientation of HCN-N2 and Q-branch intensity of pendular state spectrum of the C—H stretch of the ground state of HCN-N2 is studied, and it is found that the intensity of its Q branch spectrum increases with the increase of the electric field strength, but the intensity of the R- and P- branches decreases with the increase of the electric field strength. The relative intensity of the Q branch spectrum (ratio of spectral intensity of Q branch and total intensity of P, Q, R branches) can be used to represent the electric field intensity. Also, the study shows the orientation of the molecule increases with the increase of electric field strength. So it is proposed that the method which uses the relative intensity of the Q branch spectrum can be applied to measure the orientation of the polar molecule.
参考文献

[1] Friedrich B, Herschbach D R. Spatial orientation of molecules in strong electric fields and evidence for pendular states[J]. Nature, 1991, 353(6343): 412-414.

[2] Durand A, Loison J C, Vigue J. Spectroscopy of pendular states: Determination of the electric dipole moment of ICl in the X1Σ+ (v″=0) and A3Π1 (v′=6-29) levels[J]. J Chem Phys, 1997, 106(2): 477-484.

[3] Kanya R, Ohshima Y. Determination of dipole moment change on the electronic excitation of isolated Coumarin 153 by pendular-state spectroscopy[J]. Chem Phys Lett, 2003, 370(1-2): 211-217.

[4] Block P A, Bohac E J, Miller R E. Spectroscopy of pendular states: The use of molecular complexes in achieving orientation[J]. Phys Rev Lett, 1992, 68(9): 1303-1306.

[5] Rost J M, Griffin J C, Friedrich B, et al.. Pendular states and spectra of oriented linear molecules[J]. Phy Rev Lett, 1992, 68(9): 1299-1302.

[6] Friedrich B, Rubahn H G, Sathyamurthy N. State-resolved scattering of molecules in pendular states: ICl+Ar[J]. Phys Rev Lett, 1992, 69(17): 2487-2490.

[7] Yang X, Kerstel E R T, Scoles G, et al.. High resolution infrared molecular beam spectroscopy of cyanoacetylene clusters[J]. J Chem Phys, 1995, 103(20): 8828-8839.

[8] Rudic S, Merritty J M, Miller R E. Study of the CH3-H2O radical complex stabilized in helium nanodroplets[J]. Phys Chem Chem Phys, 2009, 11(26): 5345-5352.

[9] Shvartsburg A A, Noskov S Y, Purves R W, et al.. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry[J]. PNAS, 2009, 106(16): 6495-6500.

[10] Wei Q, Kais S, Friedrich B, et al.. Entanglement of polar symmetric top molecules as candidate qubits[J]. J Chem Phys, 2011, 135(15): 154102.

[11] Loesch H J. Orientation and alignment in reactive beam collisions: Recent progress[J]. Annu Rev Phys Chem, 1995, 46(12): 555-594.

[12] Werner U, Kabachnik N M, Kondratyev V N, et al.. Orientation effects in multiple ionization of molecules by fast ions[J]. Phy Rev Lett, 1997, 79(9): 1662-1665.

[13] Taylor W S, Abrams M L, Matthews C, et al.. State-specific reactions of Cu+(1S, 3D) with CH3X and CF3X (X = Cl, Br, I): Exploring the influence of dipole orientation on association and C-X bond activation[J]. J Phys Chem A, 2012, 116(16): 3979-3988.

[14] Rakitzis T P, Van Den Brom A J, Janssen M H M. Directional dynamics in the photodissociation of oriented molecules[J]. Science, 2004, 303(5665): 1852-1854.

[15] Casavecchia P, Leonori F, Balucani N, et al.. Probing the dynamics of pdyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometer[J]. Phys Chem Chem Phys, 2009, 11: 46-65.

[16] Beuhler Jr R J, Bernstein R B, Kramer K H. Observation of the reactive asymmetry of methyl iodide. Crossed beam study of the reaction of rubidium with oriented methyl iodide molecules[J]. J Am Chem Soc, 1966, 88(22): 5331-5332.

[17] Brooks P R, Jones E M. Reactive scattering of K atoms from oriented CH3I molecules[J]. J Chem Phys, 1966, 45(9): 3499-3450.

[18] Kaesdorf S, Schonhense G, Heinzmann U. Experimental angular-resolved hotoelectron spectroscopy of free oriented CH3I molecules[J]. Phys Rev Lett, 1985, 54(9): 885-888.

[19] Mackay R S, Curtiss T J, Bernstein R B. Strong orientation dependence of the scattering of fluoroform by graphite (0001)[J]. J Chem Phys, 1990, 92(1): 801-802.

[20] Friedrich B, Herschbach D R. On the possibility of orienting rotationally cooled polar molecules in an electric field[J]. Z Phys D: Atoms, Molecules and Clusters, 1991, 18(2): 153-161.

[21] Loesch H J, Remscheid A. Brute force in molecular reaction dynamics: A novel technique for measuring steric effects[J]. J Chem Phys, 1990, 93(7): 4779-4790.

[22] Friedrich B, Herschbach D R, Rost J M, et al.. Optical spectra of spatially oriented molecules: ICl in a strong electric field[J]. J Chem Soc Faraday Trans, 1993, 89(10): 1539-1549.

[23] Friedrich B, Herschbach D. Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces [J]. J Chem Phys, 1999, 111(14): 6157-6160.

[24] Hartelt M, Friedfich B. Directional states of symmetric-top molecules produced by combined static and radiative electric fields[J]. J Chem Phys, 2008, 128(22): 224313.

[25] Sakai H, Minemoto S, Nanjo H, et al.. Controlling the orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields[J]. Phys Rev Lett, 2003, 90(8): 083001.

[26] Nielsen J H, Stapelfeldt H, Kupper J, et al.. Making the best of mixed-field orientation of polar molecules: A recipe for achieving adiabatic dynamics in an electrostatic field combined with laser pulses[J]. Phys Rev Lett, 2012, 108(19): 193001.

[27] Gandhi S R, Curtiss T J, Bernstein R B. Asymmetry of the polarized-laser-induced photofragmentation of oriented CH3I molecules[J]. Phys Rev Lett, 1987, 59(26): 2951-2954.

[28] Parker D H. Ultrasensitive Laser Techniques[M]. New York: Academic Press, 1983: 233-309.

[29] Thoman J W, Chandler D W, Parker, D H, et al.. Two-dimensional imaging of photofragments[J]. Laser Chem, 1988, 9(1-3): 27-46.

[30] 袁松, 阚瑞峰, 何亚柏, 等. 基于可调谐半导体激光光谱大气CO2监测仪[J]. 中国激光, 2014, 41(12): 1208003.

    Yuan Song, Kan Ruifeng, He Yabai, et al.. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese J Lasers, 2014, 41(12): 1208003.

[31] 何莹, 张玉钧, 王立明, 等. 大尺度区域CO2和H2O 的激光在线检测技术[J]. 中国激光, 2014, 41(1): 0115003.

    He Ying, Zhang Yujun, Wang Liming, et al.. Laser technology for CO2 and H2O on-line detection in large-scale region[J]. Chinese J Lasers, 2014, 41(1): 0115003.

[32] 龙精明, 周卫东, 吴志伟, 等. 基于LabVIEW 的气体高分辨率光谱探测系统[J]. 中国激光, 2013, 40(1): 0115003.

    Long Jingming, Zhou Weidong, Wu Zhiwei, et al.. A high sensitive spectral detection system of gaseous measurement based on LabVIEW [J]. Chinese J Lasers, 2013, 40(1): 0115003.

[33] 马靖. 基于激光拉曼光谱的氯苯低浓度探测[J]. 中国激光, 2014, 41(2): 0215001.

    Ma Jing. Low-concentration detection of chlorobenzene based on laser Raman spectroscopy[J]. Chinese J Lasers, 2014, 41(2): 0215001.

[34] 陈玲红, 左磊, 吴建, 等. 微尺度碳粒的激光诱导辐射非傅里叶现象分析[J]. 中国激光, 2014, 41(4): 0408005.

    Chen Linghong, Zuo Lei, Wu Jian, et al.. Analysis of non-Fourier effect during laser-induced radiation of micro scale carbon particulates [J]. Chinese J Lasers, 2014, 41(4): 0408005.

[35] Gordy W, Cook R L. Microwave Molecular Spectra[M]. New York: Hohn Wiley & Sons Press, 1984: 33-619.

[36] Chang Y P, Filsinger F, Sartakov B G, et al.. CMIstark: Python package for the Stark-effect calculation and symmetry classification of linear, symmetric and asymmetric top wavefunctions in dc electric fields[J]. Comput Phys Commun, 2014, 185(1): 339-349.

[37] 陈扬骎, 杨晓华. 激光光谱测量技术[M]. 上海: 华东师范大学出版社, 2006: 8-9.

    Chen Yangqin, Yang Xiaohua. Laser Spectroscopy Technology[M]. Shanghai: East China Normal University Press, 2006: 8-9.

[38] Friedrich B, Herschbach D. Alignment enhanced spectra of molecules in intense non-resonant laser fields[J]. Chem Phys Lett, 1996, 262(1-2): 41-46.

[39] 邓敏. 冷分子的摆动光谱及其应用研究[D]. 上海: 华东师范大学, 2013: 15-16.

    Deng Min. The Investigation of Pendular Spectra of Cold Molecules and Its Applications[D]. Shanghai: East China Normal University, 2013: 15-16.

[40] Jucks K W, Miller R E. Sub-Doppler resolution infrared spectra of the isoelectronic pair: N2-HCN and OC-HCN[J]. J Chem Phys, 1988, 89(3): 1262-1267.

冒飞, 邓敏, 汪海玲, 印建平. 线性分子摆动光谱Q支相对强度与电场、分子取向度的依赖关系及其应用[J]. 光学学报, 2015, 35(10): 1030001. Mao Fei, Deng Min, Wang Hailing, Yin Jianping. Dependence of Q-Branch Intensity of Pendular State Molecules on Electric Field and Molecular Orientation and Their Applications[J]. Acta Optica Sinica, 2015, 35(10): 1030001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!