红外与毫米波学报, 2018, 37 (3): 360, 网络出版: 2018-07-30  

基于微波与光学遥感的石漠化地区土壤剖面含水率反演模型研究

Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing
殷超 1,2,*周忠发 1,2谭玮颐 1,2王平 2,3冯倩 1,3
作者单位
1 贵州师范大学 喀斯特研究院, 贵州 贵阳 550001
2 国家喀斯特石漠化防治工程技术研究中心, 贵州 贵阳 550001
3 贵州省喀斯特山地生态环境国家重点实验室培育基地, 贵州 贵阳 550001
引用该论文

殷超, 周忠发, 谭玮颐, 王平, 冯倩. 基于微波与光学遥感的石漠化地区土壤剖面含水率反演模型研究[J]. 红外与毫米波学报, 2018, 37(3): 360.

YIN Chao, ZHOU Zhong-Fa, TAN Wei-Yi, WANG Ping, FENG Qian. Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 360.

参考文献

[1] LEI Zhi-Dong, HU He-Ping, YANG Shi-Xiu. Areviewofsoilwaterresearch[J] .AdvancesinWaterScience (雷志栋, 胡和平, 杨诗秀.土壤水研究进展与评述. 水科学进展), 1999, 10(3):311-318.

[2] LI Li, WANG Di, WANG Peng-Xing, et al. Progress on monitoring soil moisture using SAR data[J]. Resources Science(李俐, 王荻, 王鹏新,等. 合成孔径雷达土壤水分反演研究进展. 资源学报), 2015, 37(10):1929-1940.

[3] YAO Yun-Jun, QIN Qi-Ming, ZHAO Shao-Hua, et al. Retrieval of soil moisture based on MODIS shortwave infrared spectral feature[J]. J. Infrared Millim. Waves(姚云军, 秦其明, 赵少华,等. 基于MODIS短波红外光谱特征的土壤含水率反演. 红外与毫米波学报), 2011, 30(1):9-14.

[4] WANG Si-Yan, SU Wei-Ci, FAN Xin-Rui, et al. Influence Factors of Soil Moisture in Karst Rocky Desertification Region——A Case Study of Puding County,Guizhou Province[J]. Research of Soil & Water Conservation(王思砚, 苏维词, 范新瑞,等. 喀斯特石漠化地区土壤含水率变化影响因素分析——以贵州省普定县为例. 水土保持研究), 2010, 17(3):171-175.

[5] LI Zhen, LIAO Jing-Juan. Inversion Model and Method of Synthetic Aperture Radar Surface [M]. Beijing: Science Press(李震, 廖静娟. 合成孔径雷达地表参数反演模型与方法. 北京:科学出版社), 2011: 221-255.

[6] ZHANG Yan-Ning, LI Ying. The Key Techniques of SAR Image Processing[M]. Beijing: Electronic Industry Press(张艳宁, 李映. SAR图像处理的关键技术. 北京:电子工业出版社), 2014: 340-347.

[7] Barrett B W, Dwyer E, Whelan P. Soil moisture retrieval from active space borne microwave observations: An evaluation of current techniques[J]. Remote Sensing, 2009,1(3): 210-242.

[8] LIU Jun, ZHAO Shao-Jie, JIANG Ling-Mei, et al. Research Progress on Dielectric Constant Model of Soil at Microwave Frequency[J]. Remote Sensing Information(刘军, 赵少杰, 蒋玲梅,等. 微波波段土壤的介电常数模型研究进展. 遥感信息),2015,30(1):5-13.

[9] HUANG Dui, WANG Wen. Surface soil moisture estimation using IEM model with calibrated roughness[J]. Nongye Gongcheng Xuebao/transactions of the Chinese Society of Agricultural Engineering(黄对, 王文. 基于粗糙度定标的IEM模型的土壤含水率反演. 农业工程学报), 2014, 30(19):182-190.

[10] WANG Lei, LI Zhen, CHEN Quan. New Calibration Method for Soil Roughness Parameters with AMSR-E Observations[J]. Journal of Remote Sensing(王磊, 李震, 陈权. 利用AMSR-E微波辐射计对地表粗糙度参数的一种新标定方法. 遥感学报), 2006, 10(5):656-660.

[11] Kumar K, Suryanarayana Rao H P, Arora M K. Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment[J]. Hydrological Processes, 2015, 29(9):2137-2148.

[12] PANG Zi-Zhen, LIAO Jing-Juan. The Study of Retrieving Surface Parameters Based on Genetic Algorithm and Backscattering Models[J]. Remote Sensing Technology and Application(庞自振, 廖静娟. 基于遗传算法和雷达后向散射模型的地表参数反演研究. 遥感技术与应用), 2008, 23(2):130-141.

[13] MA Jian-Xin, LU Xiao-Ping, MENG Qing-Yan, et al. Study on retrieval method of bare soil moisture based on semi-empirical Dubios model[J]. Science of Surveying and Mapping(马建新, 卢小平, 孟庆岩,等. 利用半经验模型的土壤水分反演方法. 测绘科学), 2016, 41(2):97-102.

[14] XIONG Wen-Cheng, SHAO Yun. Applying Multi-temporal Synthetic Aperture Radar(SAR) to Evaluating Soil-water and Salt Content Based on IEM in Arid Areas[J]. Journal of Remote Sensing(熊文成, 邵芸. 基于IEM模拟的干旱区多时相数据含水含盐量反演模型及分析. 遥感学报), 2006, 10(1):111-117.

[15] YANG Gui-Jun, YUE Ji-Bo, LI Chang-Chun, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)(杨贵军, 岳继博, 李长春,等. 基于改进水云模型和Radarsat-2数据的农田土壤含水率估算. 农业工程学报), 2016, 32(22): 146-153.

[16] Hajj M E, Baghdadi N, Zribi M, et al. Soil moisture retrieval over irrigated grassland using X-band SAR data[J]. Remote Sensing of Environment, 2016, 176:202-218.

[17] Bériaux E, Waldner F, Collienne F, et al. Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model[J]. Remote Sensing, 2015, 7(12):16204-16225.

[18] Imen G, Magagi R, Berg A A, et al. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular Radarsat-2 SAR data[J]. Remote Sensing of Environment, 2011, 115(1): 33-43.

[19] Kim Y, Jackson T, Bindlish R, et al. Retrieval of wheat growth parameters with radar vegetation indices[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 808-812.

[20] ZHAO Xin, HUANG Ni, SONG Xian-Feng, et al. A new method for soil moisture inversion in vegetation-covered area based on Radarsat 2 and Landsat 8[J]. J. Infrared Millim. Waves(赵昕, 黄妮, 宋现锋,等. 基于Radarsat2与Landsat8协同反演植被覆盖地表土壤水分的一种新方法. 红外与毫米波学报), 2016, 35(5):609-616.

[21] JIN Xiu-Liang, YANG Gui-Jun, XU Xin-Gang, et al. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and Radarsar-2 data[J]. Remote Sensing, 2015, 7(10): 13251-13272.

[22] ZHAO Jie-Peng, ZHANG Xian-Feng, BAO Hui-Yi, et al. Monitoring land surface soil moisture: co-inversion of visible, infrared and passive microwave sensing data[J] J. Infrared Millim. Waves(赵杰鹏, 张显峰, 包慧漪,等. 基于可见光红外与被动微波遥感的土壤水分协同反演. 红外与毫米波学报), 2012, 31(2): 137-142.

[23] ZENG Xun-Jing, XING Yan-Qiu, SHAN Wei, et al. Soil water content retrieval based on Sentinel-1A and Landsat 8 image for Bei’an-Heihe Expressway[J]. Chinese Journal of Eco-Agriculture(曾旭婧, 邢艳秋, 单炜,等. 基于Sentinel-1A与Landsat 8数据的北黑高速沿线地表土壤水分遥感反演方法研究. 中国生态农业学报), 2017, 25(1): 118-126.

[24] WANG Jin-Liang, QIN Qi-Ming, LIU Ming-Chao, et al. Soil moisture data assimilation based on NDVI optimization[J]. Transactions of the CSAE(王金梁, 秦其明, 刘明超,等. 基于NDVI优化选择的土壤水分数据同化. 农业工程学报), 2011, 27(12): 161-167.

[25] WANG Bin, QIAN Xiao-Gang, PENG Xi. Characters of Spatial and Temporal Distribution of Soil Moisture under Different Vegetation in Huajiang Valley[J]. Journal of Soil & Water Conservation(王膑, 钱晓刚, 彭熙.花江峡谷不同植被类型下土壤水分时空分布特征. 水土保持学报), 2006, 20(5):139-143.

[26] LI Kai-Zhong, PENG Xian-Wei, XIONG Kang-Ning. Evaluation to the Effect of Land use in Karst Valley of Guizhou Province –A Case Study in Huajiang Valley[J]. Carsologica Sinica(李开忠, 彭贤伟, 熊康宁. 贵州喀斯特峡谷地区土地利用效果评价—以贵州花江峡谷地区为例. 中国岩溶), 2005, 24(4):293-299.

[27] XIONG Kang-Ning, CHEN Yong-Bi, CHEN Hu, et al. Be able to perform wonders-Guizhou rocky desertification control technology and mode[M]. Guiiyang: Guizhou Science and Technology press(熊康宁, 陈永毕, 陈浒,等. 点石成金—贵州石漠化治理技术与模式. 贵阳:贵州科技出版社), 2011, 19.

[28] Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1):130-137.

[29] ZHANG Tian-Feng, WANG Jin-Song, GUO Jiang-Yong. Analysis on the Change of Aridity Index in Northwest China in Autumn[J]. Arid Zone Research(张天峰, 王劲松, 郭江勇. 西北地区秋季干旱指数的变化特征.干旱区研究), 2007, 24(1):87-92.

[30] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002,79(2):213-224.

殷超, 周忠发, 谭玮颐, 王平, 冯倩. 基于微波与光学遥感的石漠化地区土壤剖面含水率反演模型研究[J]. 红外与毫米波学报, 2018, 37(3): 360. YIN Chao, ZHOU Zhong-Fa, TAN Wei-Yi, WANG Ping, FENG Qian. Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 360.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!