红外与毫米波学报, 2018, 37 (3): 360, 网络出版: 2018-07-30  

基于微波与光学遥感的石漠化地区土壤剖面含水率反演模型研究

Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing
殷超 1,2,*周忠发 1,2谭玮颐 1,2王平 2,3冯倩 1,3
作者单位
1 贵州师范大学 喀斯特研究院, 贵州 贵阳 550001
2 国家喀斯特石漠化防治工程技术研究中心, 贵州 贵阳 550001
3 贵州省喀斯特山地生态环境国家重点实验室培育基地, 贵州 贵阳 550001
摘要
土壤水是全球生态系统的重要组成部分, 定量遥感估测喀斯特石漠化地区土壤含水率, 可为石漠化治理和生态恢复工作提供基础数据和理论支撑.通过Sentinel-1A和Landsat 8影像数据, 运用水云模型提取灌木林地和疏林地的土壤后向散射系数, 并计算旱地与有林地的TVDI.并结合实测数据, 利用拟合分析对不同深度土壤含水率进行建模, 从而对土壤含水率进行反演.结果表明VH极化二次曲线模型和VH极化三次曲线模型分别适用于灌木林地0~5 cm和5~10 cm深度的土壤含水率反演, 其R2和RMSE分别为0.87、0.87和4.57%、4.29%.疏林地0~5 cm和5~10 cm深度土壤含水率反演宜选用VH极化指数回归模型和VH极化下的线性回归模型, 各模型的R2与RMSE分别为0.736、0.72和9.77%、11.28%.三次曲线模型和Logistic回归模型分别适用于旱地和有林地的土壤含水率的反演, 各模型的R2与RMSE在0~5 cm深度分别为0.85、0.69和2.88%、4.02%, 在5~10 cm分别为076、0.23和3.5%、6.37%.
Abstract
Soil water is an important component of the global ecosystem. Quantitative remote sensing estimation of soil water content in Karst Rocky Desertification Area can provide basic data and theoretical support for rocky desertification control and ecological restoration. It also provides guidance for agricultural activities in Rocky Desertification Areas. Based on Sentinel-1A and Landsat 8 image data, the backscatter coefficients of shrub land and sparse woodland were extracted by using water cloud model, and TVDI of dry land and forest land were calculated by simplified Ts/NDVI feature space. Combined with the measured data, the soil moisture content of different depths was modeled by fitting analysis, which was used to inverse the soil moisture content. The results show that the VH polarization quadratic curve model and the VH polarization cubic curve model are suitable for inversion of soil water content at depths of 0~5 cm and 5~10 cm in shrub lands, respectively. The R2 and RMSE of the two models were 0.87, 0.87 and 4.57%, 4.29% individually. The exponential regression model of VH polarization was applied to soil moisture inversion of sparse woodland in 0~5 cm depth and the linear regression model of VH polarization was suitable for 5~10 cm depth. The R2 and RMSE of the two models are 0.736, 0.72 and 9.77%, 11.28% respectively. The best soil moisture inversion models of dry land and forested land are the cubic curve model and the logistic regression model respectively. And the R2 and RMSE of 0~5 cm depth soil moisture inversion are 0.85, 0.69 and 2.88%, 4.02%, while in 5~10 cm depth the value of R2 and RMSE are 0.76, 0.23 and 3.5%, 6.37% individually.
参考文献

[1] LEI Zhi-Dong, HU He-Ping, YANG Shi-Xiu. Areviewofsoilwaterresearch[J] .AdvancesinWaterScience (雷志栋, 胡和平, 杨诗秀.土壤水研究进展与评述. 水科学进展), 1999, 10(3):311-318.

[2] LI Li, WANG Di, WANG Peng-Xing, et al. Progress on monitoring soil moisture using SAR data[J]. Resources Science(李俐, 王荻, 王鹏新,等. 合成孔径雷达土壤水分反演研究进展. 资源学报), 2015, 37(10):1929-1940.

[3] YAO Yun-Jun, QIN Qi-Ming, ZHAO Shao-Hua, et al. Retrieval of soil moisture based on MODIS shortwave infrared spectral feature[J]. J. Infrared Millim. Waves(姚云军, 秦其明, 赵少华,等. 基于MODIS短波红外光谱特征的土壤含水率反演. 红外与毫米波学报), 2011, 30(1):9-14.

[4] WANG Si-Yan, SU Wei-Ci, FAN Xin-Rui, et al. Influence Factors of Soil Moisture in Karst Rocky Desertification Region——A Case Study of Puding County,Guizhou Province[J]. Research of Soil & Water Conservation(王思砚, 苏维词, 范新瑞,等. 喀斯特石漠化地区土壤含水率变化影响因素分析——以贵州省普定县为例. 水土保持研究), 2010, 17(3):171-175.

[5] LI Zhen, LIAO Jing-Juan. Inversion Model and Method of Synthetic Aperture Radar Surface [M]. Beijing: Science Press(李震, 廖静娟. 合成孔径雷达地表参数反演模型与方法. 北京:科学出版社), 2011: 221-255.

[6] ZHANG Yan-Ning, LI Ying. The Key Techniques of SAR Image Processing[M]. Beijing: Electronic Industry Press(张艳宁, 李映. SAR图像处理的关键技术. 北京:电子工业出版社), 2014: 340-347.

[7] Barrett B W, Dwyer E, Whelan P. Soil moisture retrieval from active space borne microwave observations: An evaluation of current techniques[J]. Remote Sensing, 2009,1(3): 210-242.

[8] LIU Jun, ZHAO Shao-Jie, JIANG Ling-Mei, et al. Research Progress on Dielectric Constant Model of Soil at Microwave Frequency[J]. Remote Sensing Information(刘军, 赵少杰, 蒋玲梅,等. 微波波段土壤的介电常数模型研究进展. 遥感信息),2015,30(1):5-13.

[9] HUANG Dui, WANG Wen. Surface soil moisture estimation using IEM model with calibrated roughness[J]. Nongye Gongcheng Xuebao/transactions of the Chinese Society of Agricultural Engineering(黄对, 王文. 基于粗糙度定标的IEM模型的土壤含水率反演. 农业工程学报), 2014, 30(19):182-190.

[10] WANG Lei, LI Zhen, CHEN Quan. New Calibration Method for Soil Roughness Parameters with AMSR-E Observations[J]. Journal of Remote Sensing(王磊, 李震, 陈权. 利用AMSR-E微波辐射计对地表粗糙度参数的一种新标定方法. 遥感学报), 2006, 10(5):656-660.

[11] Kumar K, Suryanarayana Rao H P, Arora M K. Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment[J]. Hydrological Processes, 2015, 29(9):2137-2148.

[12] PANG Zi-Zhen, LIAO Jing-Juan. The Study of Retrieving Surface Parameters Based on Genetic Algorithm and Backscattering Models[J]. Remote Sensing Technology and Application(庞自振, 廖静娟. 基于遗传算法和雷达后向散射模型的地表参数反演研究. 遥感技术与应用), 2008, 23(2):130-141.

[13] MA Jian-Xin, LU Xiao-Ping, MENG Qing-Yan, et al. Study on retrieval method of bare soil moisture based on semi-empirical Dubios model[J]. Science of Surveying and Mapping(马建新, 卢小平, 孟庆岩,等. 利用半经验模型的土壤水分反演方法. 测绘科学), 2016, 41(2):97-102.

[14] XIONG Wen-Cheng, SHAO Yun. Applying Multi-temporal Synthetic Aperture Radar(SAR) to Evaluating Soil-water and Salt Content Based on IEM in Arid Areas[J]. Journal of Remote Sensing(熊文成, 邵芸. 基于IEM模拟的干旱区多时相数据含水含盐量反演模型及分析. 遥感学报), 2006, 10(1):111-117.

[15] YANG Gui-Jun, YUE Ji-Bo, LI Chang-Chun, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)(杨贵军, 岳继博, 李长春,等. 基于改进水云模型和Radarsat-2数据的农田土壤含水率估算. 农业工程学报), 2016, 32(22): 146-153.

[16] Hajj M E, Baghdadi N, Zribi M, et al. Soil moisture retrieval over irrigated grassland using X-band SAR data[J]. Remote Sensing of Environment, 2016, 176:202-218.

[17] Bériaux E, Waldner F, Collienne F, et al. Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model[J]. Remote Sensing, 2015, 7(12):16204-16225.

[18] Imen G, Magagi R, Berg A A, et al. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular Radarsat-2 SAR data[J]. Remote Sensing of Environment, 2011, 115(1): 33-43.

[19] Kim Y, Jackson T, Bindlish R, et al. Retrieval of wheat growth parameters with radar vegetation indices[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 808-812.

[20] ZHAO Xin, HUANG Ni, SONG Xian-Feng, et al. A new method for soil moisture inversion in vegetation-covered area based on Radarsat 2 and Landsat 8[J]. J. Infrared Millim. Waves(赵昕, 黄妮, 宋现锋,等. 基于Radarsat2与Landsat8协同反演植被覆盖地表土壤水分的一种新方法. 红外与毫米波学报), 2016, 35(5):609-616.

[21] JIN Xiu-Liang, YANG Gui-Jun, XU Xin-Gang, et al. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and Radarsar-2 data[J]. Remote Sensing, 2015, 7(10): 13251-13272.

[22] ZHAO Jie-Peng, ZHANG Xian-Feng, BAO Hui-Yi, et al. Monitoring land surface soil moisture: co-inversion of visible, infrared and passive microwave sensing data[J] J. Infrared Millim. Waves(赵杰鹏, 张显峰, 包慧漪,等. 基于可见光红外与被动微波遥感的土壤水分协同反演. 红外与毫米波学报), 2012, 31(2): 137-142.

[23] ZENG Xun-Jing, XING Yan-Qiu, SHAN Wei, et al. Soil water content retrieval based on Sentinel-1A and Landsat 8 image for Bei’an-Heihe Expressway[J]. Chinese Journal of Eco-Agriculture(曾旭婧, 邢艳秋, 单炜,等. 基于Sentinel-1A与Landsat 8数据的北黑高速沿线地表土壤水分遥感反演方法研究. 中国生态农业学报), 2017, 25(1): 118-126.

[24] WANG Jin-Liang, QIN Qi-Ming, LIU Ming-Chao, et al. Soil moisture data assimilation based on NDVI optimization[J]. Transactions of the CSAE(王金梁, 秦其明, 刘明超,等. 基于NDVI优化选择的土壤水分数据同化. 农业工程学报), 2011, 27(12): 161-167.

[25] WANG Bin, QIAN Xiao-Gang, PENG Xi. Characters of Spatial and Temporal Distribution of Soil Moisture under Different Vegetation in Huajiang Valley[J]. Journal of Soil & Water Conservation(王膑, 钱晓刚, 彭熙.花江峡谷不同植被类型下土壤水分时空分布特征. 水土保持学报), 2006, 20(5):139-143.

[26] LI Kai-Zhong, PENG Xian-Wei, XIONG Kang-Ning. Evaluation to the Effect of Land use in Karst Valley of Guizhou Province –A Case Study in Huajiang Valley[J]. Carsologica Sinica(李开忠, 彭贤伟, 熊康宁. 贵州喀斯特峡谷地区土地利用效果评价—以贵州花江峡谷地区为例. 中国岩溶), 2005, 24(4):293-299.

[27] XIONG Kang-Ning, CHEN Yong-Bi, CHEN Hu, et al. Be able to perform wonders-Guizhou rocky desertification control technology and mode[M]. Guiiyang: Guizhou Science and Technology press(熊康宁, 陈永毕, 陈浒,等. 点石成金—贵州石漠化治理技术与模式. 贵阳:贵州科技出版社), 2011, 19.

[28] Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1):130-137.

[29] ZHANG Tian-Feng, WANG Jin-Song, GUO Jiang-Yong. Analysis on the Change of Aridity Index in Northwest China in Autumn[J]. Arid Zone Research(张天峰, 王劲松, 郭江勇. 西北地区秋季干旱指数的变化特征.干旱区研究), 2007, 24(1):87-92.

[30] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002,79(2):213-224.

殷超, 周忠发, 谭玮颐, 王平, 冯倩. 基于微波与光学遥感的石漠化地区土壤剖面含水率反演模型研究[J]. 红外与毫米波学报, 2018, 37(3): 360. YIN Chao, ZHOU Zhong-Fa, TAN Wei-Yi, WANG Ping, FENG Qian. Inversion model of soil profile moisture content in rocky desertification area based on microwave and optical remote sensing[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 360.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!