强激光与粒子束, 2012, 24 (1): 139, 网络出版: 2012-02-14   

140 GHz菱形微带曲折线慢波结构行波管的模拟计算

Simulations of rhombus-shaped microstrip meander-line slow-wave structure for 140 GHz traveling-wave tube
作者单位
电子科技大学 微波电真空器件国家级重点实验室, 成都 610054
摘要
提出了一种新型的菱形微带曲折线慢波结构。该结构可适用于低电压、宽带宽、中等功率水平的高效率毫米波行波管。和传统的慢波结构相比, 微带曲折线是一种平面结构, 因此其加工工艺可采用2维微细加工技术。该结构可以用带状电子束进行注-波互作用, 并且不需要额外的电子束通道。给出了菱形微带曲折线慢波结构在140 GHz的色散曲线和注-波互作用模拟分析。研究结果显示:在输入功率为40 mW, 带状电子束的电流和工作电压分别为90 mA和7 kV的条件下, 该微带曲折线行波管可以获得数十W功率输出, 互作用效率可达14.3%, 瞬时3 dB带宽为18 GHz(132~150 GHz)。
Abstract
A rhombus-shaped microstrip meander-line slow-wave structure is proposed for use in a low voltage, wide bandwidth, moderate power and high efficiency millimeter-wave traveling-wave tube. The structure is evolved from the original V-shaped microstrip meander-line slow-wave structure. Compared with the conventional slow-wave structure, it is a kind of planar structure, whose fabrication can be easily realized by utilizing the technology of 2-D micro-fabrication. What’s more, the structure can realize beam-wave interaction with sheet electron beam, and no additional electron beam channel is needed. The electromagnetic characteristics and the interaction between the sheet electron beam and slow wave in the structure are obtained by utilizing the electromagnetic simulation software HFSS and the particle-in-cell code in CST Particle Studio, respectively. Our calculations indicate that, at a beam voltage of 7 kV and a beam current of 90 mA, the traveling wave tube based on the structure is capable of delivering several tens of watts output power with an interaction efficiency of 14.3% and a transient 3 dB bandwidth of 18 GHz(ranging from 132 GHz to 150 GHz)
参考文献

[1] 付成芳, 魏彦玉, 蒋艺.矩形螺旋线行波管注-波互作用3维模拟[J].强激光与粒子束, 2011, 23(5):1341-1345.(Fu Chengfang, Wei Yanyu, Jiang Yi. 3D simulation of beam-wave interaction of rectangular helix traveling-wave tube. High Power Laser and Particle Beams, 2011, 23(5): 1341-1345)

[2] Fu C F, Wei Y Y, Wang W X, et al. Dispersion characteristics of a rectangular helix slow-wave structure [J]. IEEE Trans on Electron Devices, 2008, 55(12): 3582-3589.

[3] 冯进军, 蔡军, 胡银富, 等.折叠波导慢波结构太赫兹真空器件研究[J].中国电子科学研究院学报, 2009, 4(3):249-254. (Feng Jinjun, Cai Jun, Hu Yinfu, et al. THz vacuum electronics devices using folded waveguide slow wave structure. Journal of China Academy of Electronics and Information Technology, 2009, 4(3):249-254)

[4] Booske J H. New opportunities in vacuum electronics through the application of microfabrication technologies[C]// Proc IEEE Int Vac Electron Conf. 2002: 11-12.

[5] 张大勇, 冯进军, 廖复疆, 等.微带型曲折线慢波结构冷测特性的计算机仿真[J].电子器件, 2006, 29(4):1223-1226. (Zhang Dayong, Feng Jinjun, Liao Fujiang, et al. Cold-test characteristics simulation of microstrip meander-line slow wave structure. Chinese Journal of Electron Devices, 2006, 29(4):1223-1226)

[6] Sengele S, Jiang H R, Booske J H, et al. Microfabrication and characterization of a selectively metallized W-band meander-line TWT circuit[J]. IEEE Trans on Electron Devices, 2009, 56(5): 730-737.

[7] Zhang D G, Yung E K N, Ding H Y. Dispersion characteristics of a novel shielded periodic meander line[J]. Microwave and Optical Technology Letters, 1996, 12(1): 1-5.

[8] Shen F, Wei Y Y, Yin H R, et al. A novel V-shaped microstrip meander-line slow-wave structure for W-band MMPM[J]. IEEE Trans on Plasma Science, 2011.

[9] Gong Y B, Yin H R, Yue L N, et al. A 140 GHz two beam overmoded folded-waveguide traveling wave tube[J]. IEEE Trans on Plasma Science, 2011, 39(3): 847-851.

[10] Zhang C, Stevens G C. Dielectric properties of boron nitride filled epoxy composites[C]// Proc IEEE Conf on Electrical Insulation and Dielectric Phenomena. 2006: 19-22.

沈飞, 魏彦玉, 许雄, 徐进, 巩华荣, 黄民智, 宫玉彬, 王文祥. 140 GHz菱形微带曲折线慢波结构行波管的模拟计算[J]. 强激光与粒子束, 2012, 24(1): 139. Shen Fei, Wei Yanyu, Xu Xiong, Xu Jin, Gong Huarong, Huang Minzhi, Gong Yubin, Wang Wenxiang. Simulations of rhombus-shaped microstrip meander-line slow-wave structure for 140 GHz traveling-wave tube[J]. High Power Laser and Particle Beams, 2012, 24(1): 139.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!