激光与光电子学进展, 2013, 50 (6): 060002, 网络出版: 2013-05-15   

高功率激光驱动器终端光学组件研究现状 下载: 665次

Research Status of Final Optics Assembly in High-Power Laser Facility
作者单位
中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
摘要
终端光学组件是高功率激光驱动器的核心单元之一,承担着频率转换、光束聚焦、谐波分离和测量取样等功能。通过光学和结构设计可以实现终端光学组件的基本功能,满足高功率激光驱动器开展各项实验的基本要求,但是激光导致的终端元件损伤问题和强紫外光传输带来的若干非线性效应是制约终端光学组件总体性能的关键问题。综述了国内外高功率激光驱动器终端光学组件的研究历程,分析了终端光学组件面临的主要问题,并探讨了终端光学组件设计的主要思路。
Abstract
Final optics assembly (FOA) is one of the most important parts in high-power laser facilities. The FOA primary functions include frequency conversion, focusing, wavelength separation and diagnostic beam sampling, which can be realized through optimized FOA optical and structural design. Such a design can meet the basic requirements of high-power laser facilities for different experiments. However, laser-induced damage of final optics and several nonlinear effects resulting from high intensity ultraviolet (UV) laser pulses are major concern during FOA design, construction and operation. This paper reviews the development process of FOA in high power laser facilities, analyzes the core consideration, and discusses the main solution in FOA design.
参考文献

[1] J. Lindl. Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect drive[M]. Berlin: Springer-Verlag, 1998

[2] W. F. Krupke. Solid state lasers for application to inertial confinement fusion[C]. SPIE, 1995, 2633: 2~12

[3] G. H. Miller, E. I. Moses, C. R. Wuest. The National Ignition Facility[J]. Opt. Engng., 2004, 43(12): 2841~2853

[4] C. Cavailler. Inertial fusion with the LMJ[C]. Plasma Phys. Control. Fusion, 2005, 47: B389~B403

[5] X. T. He, W. Y. Zhang. Inertial fusion research in China[J]. Eur. Phys. J. D, 2007, 44(2): 227~231

[6] P. Wegner, J. Auerbach, T. Biesiada et al.. NIF final optics system: frequency conversion and beam conditioning[C]. SPIE, 2004, 5341: 180~189

[7] P. J. Wegner, M. A. Henesian, D. R. Speck et al.. Harmonic conversion of large-aperture 1.05-μm laser beams for inertial-confinement fusion research[J]. Appl. Opt., 1992, 31(30): 6414~6426

[8] B. M. Van Wonterghem, J. R. Murray, J. H Campbell et al.. Performance of a prototype for a large-aperture multipass Ndglass laser for inertial confinement fusion[J]. Appl. Opt., 1997, 36(21): 4932~4953

[9] J. T. Hunt. National Ignition Facility Performance Review 1998[R]. Livermore: Lawrence Livermore National Laboratory, 1999

[10] J. T. Hunt. National Ignition Facility Performance Review 1999[R]. Livermore: Lawrence Livermore National Laboratory, 2000

[11] A. K. Burnham, L. Hackel, P. Wegner et al.. Improving 351-nm Damage Performance of Large-Aperture Fused Silica and DKDP Optics[R]. Livermore: Lawrence Livermore National Laboratory, 2002

[12] T. G. Parham, S. Azevedo, J. Chang et al.. Large Aperture Optics Performance[R]. Livermore: Lawrence Livermore National Laboratory, 2009

[13] Lawrence Livermore National Laboratory. National Ignition Facility User Guide[R]. Livermore: Lawrence Livermore National Laboratory, 2012

[14] Han Wei, Huang Wangin, Li Keyu et al.. Stimulated Brillouin scattering damage of large-aperture fused silica grating[J]. Chin. Phys. Lett., 2010, 27(12): 124205

[15] J. Wong, J. L. Ferriera, E. F. Lindsey et al.. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses[J]. J. Non-Cryst. Solids, 2006, 352(3): 255~272

[16] A. K.Burnham, M. Runkel, M. D. Feit et al.. Laser-induced damage in deuterated potassium dihydrogen phosphate[J]. Appl. Opt., 2003, 42(27): 5483~5494

[17] H. Bercegol, P. Bouchut, L. Lamaignere et al.. The impact of laser damage on the lifetime of optical components in fusion lasers[C]. SPIE, 2004, 5273: 312~324

[18] Mark Henesian, C. D. Swift, J. R. Murray. Summary of Stimulated Raman Scattering Experiments in the Nova Air-Path and Projected Nova and Nova II System Performance Limits[R]. Livermore: Lawrence Livermore National Laboratory, 1985

[19] E. Bordenave, T. Chies. Numerical simulations of stimulated Raman scattering in LIL transport section with Miró propagation code and comparison with ENOLIT diagnostic results[J]. J. Phys. IV France, 2006, 133: 661~663

[20] 王静,韩伟, 周丽丹 等. 强激光长程空气传输受激转动拉曼散射效应实验研究[J]. 光学学报, 2011, 31(s1): s100410

    Wang Jing, Han Wei, Zhou Lidan et al.. Experimental research on stimulated rotational Raman scattering in air with high-power laser[J]. Acta Optica Sinica, 2011, 31(s1): s100410

[21] D. Milam, J. T. Hunt, K. R. Manes et al.. Modeling of Filamentation Damage Induced in Silica by 351-nm Laser Pulses[R]. Lawrence Livermore National Laboratory, 1996

[22] Hervé Bercegol, Alain Boscheron, J.-Michel Di-Nicola et al.. Laser damage phenomena relevant to the design and operation of an ICF laser driver[J]. J. Physics, 2008, 112(3): 032013

[23] 陈宝算, 张军勇, 张艳丽 等. 高功率激光系统中的小尺度自聚焦研究[J]. 激光与光电子学进展, 2012, 49(1): 010002

    Chen Baosuan, Zhang Junyong, Zhang Yanli et al.. Study of small-scale self-focusing in high-power laser system[J]. Laser & Optoelectronics Progress, 2012, 49(1): 010002

[24] R. A. Sacks, C. E. Barker, R. B. Ehrlich et al.. Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals[R]. Livermore: Lawrence Livermore National Laboratory, 1992

[25] C. E. Barker, R. A. Sacks, B. M. V. Wonterghem et al.. Transverse stimulated Raman scattering in KDP[C]. SPIE, 1995, 2633: 501~505

[26] Stavros G. Demos, Rajesh N. Raman, Steven T. Yang et al.. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals[J]. Opt. Express, 2011, 19(21): 21050~21059

[27] 王静, 张小民, 李富全 等. 大口径KDP晶体紫外光横向受激拉曼散射风险判据研究[J]. 中国激光, 2011, 38(5): 0502011

    Wang Jing, Zhang Xiaomin, Li Fuquan et al.. Risk evaluation of transverse stimulated Raman scattering in large-aperture, high fluence KDP crystal[J]. Chinese J. Lasers, 2011, 38(5): 0502011

[28] J. M. Eggleston, M. J. Kushner. Stimulated Brillouin scattering parasitics in large optical windows[J]. Opt. Lett., 1987, 12(6): 410~412

[29] J. R. Murray, J. R. Smith, R. B. Ehrlich et al.. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components[J]. J. Opt. Soc. Am. B, 1989, 6(12): 2402~2422

[30] D. T. Kyrazis, T. L. Weiland. Determination of SBS induced damage limits in large fused silica optics for intense, time varying laser pulses[C]. SPIE, 1991, 1441: 469~477

[31] J. L. Hendrix, J. Schweyen, J. Rowe et al.. Ghost Analysis Visualization Techniques for Complex Systems: Examples from the NIF Final Optics Assembly[R]. Livermore: Lawrence Livermore National Laboratory, 1998

[32] H. Benard, G. Mathieu, N. Ferriou et al.. Simulation and analysis of ghost images for the megajoule laser[C]. SPIE, 1999, 3492: 321~327

[33] 莫磊, 粟敬钦, 王方 等. 高功率激光系统中杂散光分析的计算机辅助设计[J]. 中国激光, 2009, 36(s1): 231~234

    Mo Lei, Su Jingqin,Wang Fang et al.. CAD of the modeling stray light in the high power laser system[J]. Chinese J. Lasers, 2009, 36(s1): 231~234

[34] M. D. Feit, C. D. Boley. Modeling the Interaction of the NIF Laser Beam with Laser Components[R]. Livermore: Lawrence Livermore National Laboratory, 1999

[35] 赵东峰, 王利, 林尊琪 等. 在神光Ⅱ装置第九路系统开展351 nm波长激光高通量传输的实验研究[J]. 中国激光, 2011, 38(7): 0702001

    Zhao Dongfeng, Wang Li, Lin Zunqi et al.. Experimental study of 351 nm propagation with high fluence on No.9 system of SG-Ⅱ laser facility[J]. Chinese J. Lasers, 2011, 38(7): 0702001

李富全, 韩伟, 王芳, 张小民, 魏晓峰, 冯斌, 向勇, 贾怀庭, 李恪宇. 高功率激光驱动器终端光学组件研究现状[J]. 激光与光电子学进展, 2013, 50(6): 060002. Li Fuquan, Han Wei, Wang Fang, Zhang Xiaomin, Wei Xiaofeng, Feng Bin, Xiang Yong, Jia Huaiting, Li Keyu. Research Status of Final Optics Assembly in High-Power Laser Facility[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060002.

本文已被 16 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!