强激光与粒子束, 2018, 30 (11): 111003, 网络出版: 2019-01-18  

基于紧聚焦超高斯激光脉冲的大电量低发散度电子束产生

Generation of high-quality electron beams based on tightly focused super-Gaussian laser
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
在激光尾场加速中, 光学注入是一种有效的可控电子注入机制。然而, 低电量、大发散度的电子束特性无法满足实际应用的需要。为获得大电量、高品质电子束提出采用紧聚焦的超高斯激光作为注入脉冲的新型注入方案。研究发现, 相比于普通高斯激光, 紧聚焦的超高斯激光不仅能够将电子束发散度降低近一个数量级, 而且能够保持电子束电荷量不变。通过哈密顿理论模型证实, 离轴电子是发散度的主要来源, 而紧聚焦的超高斯激光极大地限制了离轴电子的注入, 因此有效地降低了电子束的发散度。
Abstract
Electron optical injection is an efficient all-optical injection scheme in laser wakefield accelerations. However, low-charge and large emittance electron beam is still not suitable for many practical applications. This paper presents a novel injection scheme by colliding a tightly focused super-Gaussian laser with a Gaussian pump laser. It is found that the emittance of electron beam becomes almost an order of magnitude lower than that of all-Gaussian case, while the charge of electron bunch is conserved. It is also found that the electron emittance is mainly attributed to off-axis injected electrons by a Hamiltonian model. This unique ability will pave the way towards the generation of high-quality electron beams and extend the applications of laser-plasma accelerators.
参考文献

[1] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81: 1229-1285.

[2] Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2006, 2(10): 696-699.

[3] Hafz N A M, Jeong T M, Choi I W, et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels[J]. Nature Photonics, 2011, 2(9): 571-577.

[4] Clayton C E, Ralph J E, Albert F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003.

[5] Kim H T, Pae K H, Cha H J, et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 2013, 111: 165002.

[6] Wang X M, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4(3): 131-140.

[7] Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002.

[8] Yang L, Deng Z, Zhou C T, et al. High-charge energetic electron bunch generated by intersecting laser pulses[J]. Physics of Plasmas, 2013, 20: 033102.

[9] Kalmykov S Y, Beck A, Yi S A, et al. Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime[J]. Physics of Plasmas, 2011, 18(5): R6189.

[10] Shen B, Wu Y, Dong K, et al. High-charge energetic electron bunch generated by 100 TW laser pulse[J]. Physics of Plasmas, 2012, 19: 033106.

[11] Németh K, Shen B, Li Y, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002.

[12] Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 2009, 5(11): 826-829.

[13] Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003.

[14] Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci USA, 2014, 111(16): 5825-5830.

[15] Chen M, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101.

[16] Yu L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2014, 112: 125001.

[17] SSchmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 091301.

[18] Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110(18): 185006.

[19] Umstadter D, Kim J K, Dodd E. Laser injection of ultrashort electron pulses into wakefield plasma waves[J]. Physical Review Letters, 1996, 76(12): 2073-2076.

[20] Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Physical Review Letters, 1997, 79(14): 2682-2685.

[21] Schroeder C B, Lee P B, Wurtele J S, et al. Generation of ultra-short electron bunches by colliding laser pulses[J]. Physical Review E, 1999, 59: 6037-6047.

[22] Kotaki H, Masuda S, Kando M, et al. Head-on injection of a high quality electron beam by the interaction of two laser pulses[J]. Physics of Plasmas, 2004, 11(9): 4539-4539.

[23] Fubiani G, Esarey E, Schroeder C B, et al. Beat wave injection of electrons into plasma waves using two interfering laser pulses[J]. Physical Review E, 2004, 70: 016402.

[24] Sheng Z M, Mima K, Zhang J, et al. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma[J]. Physical Review E, 2004, 69: 016407.

[25] Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739.

[26] Rechatin C, Faure J, Lifschitz A, et al. Quasi-monoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas[J]. New Journal of Physics, 2009, 11: 013011.

[27] Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Physical Review Letters, 2009, 102: 065001.

[28] Beck A, Davoine X, Lefebvre E. Scaling laws for electron cold injection in the narrow collision pulse approximation[J]. New Journal of Physics, 2011, 13(9): 093016.

[29] Wang W M, Sheng Z M. Effect of laser parameters on electron injection into laser wakefields in plasma with a counterpropagating additional laser pulse[J]. Physics of Plasmas, 2008, 15: 13101.

[30] Rechatin C, Faure J, Ben-Ismail A, et al. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator[J]. Physical Review Letters, 2009, 102: 164801.

[31] Deng Z G, Yang L, Zhou C T, et al. Dual effects of stochastic heating on electron injection in laser wakefield acceleration[J]. Physics of Plasmas, 2014, 21: 083103.

[32] Lehe R, Lifschitz A F, Davoine X, et al. Optical transverse injection in laser-plasma acceleration[J]. Physical Review Letters, 2013, 111: 085005.

[33] Cormier-Michel E, Ranjbar V, Bruhwiler D, et al. Design principles for high quality electron beams via colliding pulses in laser plasma accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2014, 17: 091301.

[34] Deng Z G, Zhang Z M, Zhang B, et al. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma[J]. Physical Review E, 2017, 95(2/1): 023206.

[35] Rechatin C, Faure J, Lifschitz A, et al. Plasma wake inhibition at the collision of two laser pulses in an underdense plasma[J]. Physics of Plasmas, 2007, 14: 060702.

[36] Tzoufras M, Lu W, Tsung F S, et al. Beam loading in the nonlinear regime of plasma-based acceleration[J]. Physical Review Letters, 2008, 101: 145002.

[37] Rechatin C, Faure J, Davoine X, et al. Characterization of the beam loading effects in a laser plasma accelerator[J]. New Journal of Physics, 2010, 12: 045023.

[38] Davoine X, Beck A, Lifschitz A, et al. Cold injection for electron wakefield acceleration[J]. New Journal of Physics, 2010, 12: 095010.

[39] Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002.

[40] Esarey E, Pilloff M. Trapping and acceleration in nonlinear plasma waves[J]. Physics of Plasmas, 1995, 2(5): 1432-1436.

[41] Kostyukov I, Pukhov A, Kiselev S. Phenomenological theory of laser-plasma interaction in “bubble” regime[J]. Physics of Plasmas, 2004, 11(11): 5256-5264.

邓志刚, 贺书凯, 崔波, 滕建, 张智猛. 基于紧聚焦超高斯激光脉冲的大电量低发散度电子束产生[J]. 强激光与粒子束, 2018, 30(11): 111003. Deng Zhigang, He Shukai, Cui Bo, Teng Jian, Zhang Zhimeng. Generation of high-quality electron beams based on tightly focused super-Gaussian laser[J]. High Power Laser and Particle Beams, 2018, 30(11): 111003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!