红外与激光工程, 2018, 47 (3): 0303003, 网络出版: 2018-04-26   

激光引信与预制破片战斗部引战配合设计

Design of fuze-warhead coordination based on laser fuze and prefabricated fragment ammunition
作者单位
1 安徽新华学院 电子通信工程学院, 安徽 合肥 230088
2 安徽东风机电科技股份有限公司, 安徽 合肥 230022
摘要
针对预制破片弹破片飞散的特点, 提出了一种基于激光近炸引信控制的预制破片战斗部引战配合的设计思路。通过公式推导、Matlab软件仿真和计算预制破片战斗部对等效面积靶板的毁伤, 获得战斗部理想的起爆高度。在理想起爆高度条件下, 选择合适的激光探测视场进行引信设计, 从而完成预制破片弹引战配合在特定条件下的最优设计。结果表明: 在导弹散布误差为5 m、俯仰角为60°, 攻击目标特征为5 m×3 m×3 m的指挥车时, 战斗部起爆高度在4~6 m间, 命中目标的有效破片密度最大, 在此起爆高度内对引信的探测概率和探测高度进行分析、计算得出: 激光引信最优光束发射角在17°~30°。这种引战配合设计对于激光引信控制的预制破片弹的工程应用具有实际的参考价值。
Abstract
Aiming at the fragmentation dispersion characteristic of prefabricated fragment ammunition, fuze-warhead coordination was designed based on prefabricated fragment ammunition controlled by laser proximity fuze. Ideal warhead explosion height was obtained through formula deduction, Matlab software simulation and calculation of target damage at a equivalent area. Under this condition of the ideal explosion height, the laser fuze was designed through selecting appropriate laser beam detection field. Thus a optimal design of fuze-warhead coordination under specified conditions was completed. Results showed that: in the the range of 5 m of the missile dispersion, 60° pitch angle and 5 m × 3 m×3 m command vehicle target, effective fragment density is the biggest at the warhead explosion 4-6 m height. Detection probability and height of the laser proximity fuze are analyzed and calculated at the height interval of the detonating height, the optimal beam emission angle of laser fuze is from 17° to 30°. This design is of practical reference value for the application of the prefabricated fragment ammunition controlled by laser fuze.
参考文献

[1] 姜易阳, 倪邦福, 钱红庆. 激光近炸复合引信探测舰船目标的建模与仿真[J]. 红外与激光工程, 2016, 45(10): 1006001.

    Jiang Yiyang, Ni Bangfu, Qian Hongqing. Modeling and simulation of combination laser proximity fuse detecting warship target[J]. Infrared and Laser Engineering, 2016, 45(10): 1006001. (in Chinese)

[2] 宗丽娜. 便携式反直升机引战配合的计算机仿真研究[D].南京: 南京理工大学, 2006.

    Zong Lina. Fuze-warhead coordination simulation of portable anti helicopter research on computer [D]. Nanjing: Nanjing University of Science and Technology, 2006. (in Chinese)

[3] 聂浩, 吴正龙. 预制破片弹对装甲目标毁伤效能计算[J].兵器装备工程学报, 2015, 36(5): 57-59.

    Nie Hao, Wu Zhenglong. Research and calculation on damage efficiency against armored target of time-fuzed ammunition[J]. Journal of Ordnance Equipment Engineering, 2015, 36(5): 57-59. (in Chinese)

[4] 陈慧敏, 贾晓东, 蔡克荣. 激光引信技术[M]. 北京: 国防工业出版社, 2016.

    Chen Huiming, Jia Xiaodong, Cai Kerong. Laser Fuze Technology[M]. Beijing: National Defense Industry Press, 2016: 256-257. (in Chinese)

[5] 施智勇, 潘晓声, 张谦. 利用延时法进行高精度脉冲激光测距[J]. 光学 精密工程, 2014, 22(2): 252-258.

    Shi Zhiyong, Pan Xiaosheng, Zhang Qian. High-precision pulsed laser measuring distance by time delay method[J].Optics and Precision Engineering, 2014, 22(2): 252-258. (in Chinese)

[6] 王凤杰, 陈慧敏. 脉冲激光引信云雾回波特性仿真[J]. 光学 精密工程, 2015, 23(10z): 1-7.

    Wang Fengjie, Chen Huimin. Simulation of characteristics of cloud and fog echo for pluse laser fuse [J]. Optics and Precision Engineering, 2015, 23(10z): 1-7. (in Chinese)

[7] 李殿军, 王化龙, 杨贵龙, 等. 峰值功率等激光术语的理解与应用问题[J]. 中国光学, 2015, 8(5): 873-880.

    Li Dianjun, Wang Hualong, Yang Guilong, et al. Comprehension and usage of ordinary terminologies for laser taking peak power as example[J]. Chinese Optics, 2015, 8(5): 873-880. (in Chinese)

[8] 田金荣, 宋晏蓉, 王丽. 常用激光峰值功率公式误差分析[J]. 中国光学, 2014, 7(2): 253-259.

    Tian Jingrong, Song Yanrong, Wang Li. Error analysis of peak power formula in pulsed lasers[J]. Chinese Optics, 2014, 7(2): 253-259. (in Chinese)

[9] 诸德放, 张真, 王文强. 空地反辐射导弹激光近炸引信目标识别方法[J]. 弹箭与制导学报, 2015, 35(3): 75-78.

    Zhu Defang, Zhang Zhen, Wang Wenqiang. Target recongnition method of laser proximity fuze for anti-radiation missle[J]. Journal of Missiles and Guidance, 2015, 35(3): 75-78. (in Chinese)

[10] 史春波, 马献华. 探测视场对激光引信作用距离影响分析[J]. 红外与激光工程, 2007, 36(21): 636-639.

    Shi Chunbo, Ma Xianhua. Analysis of the detecting visual field influenced on the oprating distance of the laser fuze[J]. Infrared and Laser Engineering, 2007, 36(21): 636-639. (in Chinese)

[11] 张泽宇, 谢小平, 段弢, 等. 3.8 μm 和 1.55 μm 激光辐射在雾中传输特性的数值计算[J]. 红外与激光工程, 2016, 45(s1): S104007.

    Zhang Zeyu, Xie Xiaoping, Duan Tao, et al. Numerical calculation of 3.8 μm and 1.55 μm laser radiation transmission characteristic under foggy condition[J]. Infrared and Laser Engineering, 2016, 45(s1): S104007. (in Chinese)

于玉亭, 舒敬荣, 丁伯圣. 激光引信与预制破片战斗部引战配合设计[J]. 红外与激光工程, 2018, 47(3): 0303003. Yu Yuting, Shu Jingrong, Ding Bosheng. Design of fuze-warhead coordination based on laser fuze and prefabricated fragment ammunition[J]. Infrared and Laser Engineering, 2018, 47(3): 0303003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!