液晶与显示, 2020, 35 (9): 892, 网络出版: 2020-10-28   

基于激基复合物的高效单色和白色有机发光二极管

High efficient monochromatic and white organic light-emitting diodes based on exciplex
作者单位
上海理工大学 理学院, 上海200093
摘要
为了探究激基复合物对于有机发光二极管(OLED)性能的影响, 本文制备了一系列基于无激基复合物结构和激基复合物结构的器件。首先对比分析N,N′-bis(naphthalene-1-yl)-N,N′-bis(phe-nyl)-benzidine (NPB)、4,4′,4″-tris(Ncarbazolyl)-triphenylamine (TCTA)、1,3,5-tris(Nphenylbenzimidazole-2-yl) benzene (TPBi)、NPB∶TPBi和TCTA∶TPBi五种薄膜的光致发光(PL)光谱, 确定了NPB∶TPBi不能有效地形成激基复合物, 而TCTA∶TPBi符合激基复合物的要求。随后结合蓝色磷光Bis[(3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyridyl) iridium(Ⅲ) (FIrpic)和橙色磷光Bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate iridium(Ⅲ) (PO-01)超薄发光层, 制备了一系列的单色和白色OLED器件, 并优化了磷光超薄发光层的厚度以获得更高亮度和效率。相比于无激基复合物器件, 基于激基复合物的单色蓝光、橙光、双色白光器件性能得到极大的提升, 获得最大的亮度分别为5 823, 29 000, 23 790 cd/m2, 最大功率效率(PE)分别为15.3, 47.8, 51.0 lm/W。这些改进的器件性能归因于三重态激子到单重态激子的反向系间窜越(RISC)和高效的主客体能量转移。
Abstract
In order to explore the influence of exciplex on the performance of organic light-emitting diodes (OLED), a series of devices based on the structure with or without exciplex have been fabricated. Firstly, it is determined that NPB∶TPBi is not effective to form exciplex, while TCTA∶TPBi possesses exciplex performance requirements by comparing and analyzing the photoluminescence spectra of N,N′-bis(naphthalene-1-yl)-N,N′-bis(phe-nyl)-benzidine (NPB), 4,4′,4″-tris(Ncarbazolyl)-triphenylamine (TCTA), 1,3,5-tris(Nphenylbenzimidazole-2-yl) benzene (TPBi), NPB∶TPBi and TCTA∶TPBi films. Then, a series of monochromatic and white OLED devices have been fabricated by combining ultrathin emission layer of blue phosphorescence bis[(3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyridyl) iridium(Ⅲ) (FIrpic) and orange phosphorescence bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate iridium(Ⅲ) (PO-01), and the thickness of ultrathin phosphor layers are optimized to achieve high brightness and efficiency. Compared with devices without exciplex, the performance of monochromatic blue, orange and two-color white devices based on the exciplex have been greatly improved, with the maximum brightness of 5 823, 29 000, 23 790 cd/m2 and the maximum power efficiency (PE) of 15.3, 47.8, 51.0 lm/W, respectively. These improved device performances are attributed to the reverse inter system crossing (RISC) from triplet exciton to singlet exciton and the efficient host-guest energy transfer, which provides a feasible idea for the preparation of high-efficiency OLED devices with simple structure.
参考文献

[1] WU X X, LI F S, WU W, et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film formed by spray-coating[J]. Vacuum, 2014, 101: 53-56.

[2] CHIME A C, FISCHER A P A, BENSMIDA S, et al. Analysis of optical and electrical responses of μ-OLED with metallized ITO coplanar waveguide electrodes submitted to nanosecond electrical pulses[J]. IEEE Transactions on Electron Devices, 2019, 66(5): 2282-2289.

[3] CHOI J H, LEE M, KANG K, et al. Adaptive color saturation control for low power RGBW OLED displays[J]. Journal of Display Technology, 2016, 12(8): 784-790.

[4] 关晓琳, 孟丽, 贾天明, 等. 液晶性直线型共轭芳炔衍生物的合成及电致发光性质[J]. 应用化学, 2018, 35(4): 426-435.

    GUAN X L, MENG L, JIA T M, et al. Synthesis and electroluminescent properties of a liquid crystalline linear conjugated arylacetylene derivative[J]. Chinese Journal of Applied Chemistry, 2018, 35(4): 426-435.

[5] 刘伟强,崔荣朕,武瑞霞,等. 蓝色延迟荧光材料及器件的研究进展[J]. 应用化学, 2019, 36(1): 1-9.

    LIU W Q,CUI R Z,WU R X, et al. Recent progress on blue delayed fluorescent materials and devices[J]. Chinese Journal of Applied Chemistry, 2019, 36(1): 1-9.(in Chinese)

[6] HU B, YAN L, SHAO M. Magnetic-field effects in organic semiconducting materials and devices[J]. Advanced Materials, 2009, 21(14/15): 1500-1516.

[7] SUN Y R, GIEBINK N C, KANNO H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices[J]. Nature, 2006, 440(7086): 908-912.

[8] WANG Q, HO C L, ZHAO Y B, et al. Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs: the influence of triplet transfer and charge-transport behavior on enhancing device performance[J]. Organic Electronics, 2010, 11(2): 238-246.

[9] HIGUCHI T, NAKANOTANI H, ADACHI C. High-efficiency white organic light-emitting diodes based on a blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters[J]. Advanced Materials, 2015, 27(12): 2019-2023.

[10] LIN B Y, EASLEY C J, CHEN C H, et al. Exciplex-sensitized triplet-triplet annihilation in heterojunction organic thin-film[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10963-10970.

[11] FENG D X, DONG D, LIAN L, et al. High efficiency non-doped white organic light-emitting diodes based on blue exciplex emission[J]. Organic Electronics, 2018, 56: 216-220.

[12] PARK Y S, LEE S, KIM K H, et al. Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency[J]. Advanced Functional Materials, 2013, 23(39): 4914-4920.

[13] SEINO Y, SASABE H, PU Y J, et al. High-performance blue phosphorescent OLEDs using energy transfer from exciplex[J]. Advanced Materials, 2014, 26(10): 1612-1616.

[14] SHIN H, LEE S H, KIM K H, et al. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit[J]. Advanced Materials, 2014, 26(27): 47s-4734.

[15] KALINOWSKI J, COCCHI M, VIRGILI D, et al. Mixing of excimer and exciplex emission: a new way to improve white light emitting organic electrophosphorescent diodes[J]. Advanced Materials, 2007, 19(22): 4000-4005.

[16] XU T, ZHANG Y X, HUANG C C, et al. Highly simplified blue phosphorescent organic light-emitting diodes incorporating exciplex-forming co-host assisting energy transfer[J]. Journal of Luminescence, 2019, 206: 554-559.

[17] ZHANG L, CAI C, LI K F, et al. Efficient organic light-emitting diode through triplet exciton reharvesting by employing blended electron donor and acceptor as the emissive layer[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 24983-24986.

[18] CHEN Z, LIU X K, ZHENG C J, et al. High performance exciplex-based fluorescence-phosphorescence white organic light-emitting device with highly simplified structure[J]. Chemistry of Materials, 2015, 27(15): 5206-5211.

[19] LUO D X, LI X L, ZHAO Y, et al. High-performance blue molecular emitter-free and doping-free hybrid white organic light-emitting diodes: an alternative concept to manipulate charges and excitons based on exciplex and electroplex emission[J]. ACS Photonics, 2017, 4(6): 1566-1575.

[20] 倪婷, 丁磊, 王江南, 等.基于激基复合物主体的高性能OLED器件[J].液晶与显示, 2019, 34(9): 841-848.

    NI T, DING L, WANG J N, et al. OLED with high performance based on exciplex[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 841-848. (in Chinese)

[21] LIN H W, LIN W C, CHANG J H, et al. Solution-processed hexaazatriphenylene hexacarbonitrile as a universal hole-injection layer for organic light-emitting diodes[J]. Organic Electronics, 2013, 14(4): 1204-1210.

[22] 吴有智, 郑新友, 朱文清, 等.以Liq作为电子注入层的高效有机电致发光器件[J].发光学报, 2003, 24(5): 473-476.

    WU Y Z, ZHENG X Y, ZHU W Q, et al. Efficiency improvement of organic electroluminescent devices by using Liq as an electron injection layer[J]. Chinese Journal of Luminescence, 2003, 24(5): 473-476. (in Chinese)

[23] MU X, WU X M, HUA Y L, et al. Low driving voltage in an organic light-emitting diode using MoO3/NPB multiple quantum well structure in a hole transport layer[J]. Chinese Physics B, 2013, 22(2): 027805.

[24] KANG J W, LEE S H, PARK H D, et al. Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes[J]. Applied Physics Letters, 2007, 90(22): 223508.

[25] JIANG Z L, TIAN W, KOU Z Q, et al. The influence of the mixed host emitting layer based on the TCTA and TPBi in blue phosphorescent OLED[J]. Optics Communications, 2016, 372: 49-52.

[26] KUE K W, SHENG R, DUAN Y, et al. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers[J]. Organic Electronics, 2015, 26: 451-457.

[27] XU T, YANG M J, LIU J, et al. Wide color-range tunable and low roll-off fluorescent organic light emitting devices based on double undoped ultrathin emitters[J]. Organic Electronics, 2016, 37: 93-99.

[28] WU M J, WANG Z J, LIU Y F, et al. Non-doped phosphorescent organic light-emitting devices with an exciplex forming planar structure for efficiency enhancement[J]. Dyes and Pigments, 2019, 164: 119-125.

[29] KALINOWSKI J, GIRO G, COCCHI M, et al. Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis ((di-4-tolylamino)phenyl) cyclohexane[J]. Applied Physics Letters, 2000, 76(17): 2352-2354.

[30] YOOK K S, LEE J Y. Narrow bandgap host material for high quantum efficiency yellow phosphorescent organic light-emitting diodes doped with iridium(Ⅲ) bis(4-phenylthieno[3,2-c]pyridine)acetylacetonate[J]. Journal of Luminescence, 2015, 161: 271-274.

[31] QI Y G, WANG Z J, HOU S H, et al. Color stable and highly efficient hybrid white organic light-emitting devices using heavily doped thermally activated delayed fluorescence and ultrathin non-doped phosphorescence layers[J]. Organic Electronics, 2017, 43: 112-120.

[32] LIU B Q, NIE H, ZHOU X B, et al. Manipulation of charge and exciton distribution based on blue aggregation-induced emission fluorophors: a novel concept to achieve high-performance hybrid white organic light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(5): 776-783.

[33] KIM B S, LEE J Y. Engineering of mixed host for high external quantum efficiency above 25% in green thermally activated delayed fluorescence device[J]. Advanced Functional Materials, 2014, 24(25): 3970-3977.

[34] LIU B Q, TAO H, WANG L, et al. High-performance doping-free hybrid white organic light-emitting diodes: the exploitation of ultrathin emitting nanolayers (< 1 nm)[J]. Nano Energy, 2016, 26: 26-36.

袁青松, 付祥恩. 基于激基复合物的高效单色和白色有机发光二极管[J]. 液晶与显示, 2020, 35(9): 892. YUAN Qing-song, FU Xiang-en. High efficient monochromatic and white organic light-emitting diodes based on exciplex[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(9): 892.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!