中国激光, 2020, 47 (8): 0811002, 网络出版: 2020-08-17   

平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响 下载: 618次

Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma
作者单位
1 吉林化工学院理学院, 吉林 吉林 132022
2 吉林大学原子与分子物理研究所, 吉林 长春 130012
3 吉林大学吉林省应用原子分子光谱重点实验室, 吉林 长春 130012
引用该论文

杨雪, 陈安民, 李苏宇, 姜远飞, 金明星. 平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响[J]. 中国激光, 2020, 47(8): 0811002.

Yang Xue, Chen Anmin, Li Suyu, Jiang Yuanfei, Jin Mingxing. Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma[J]. Chinese Journal of Lasers, 2020, 47(8): 0811002.

参考文献

[1] Wang Z, Dong F Z, Zhou W D. A rising force for the world-wide development of laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2015, 17(8): 617-620.

[2] Wang Z Z, Deguchi Y, Zhang Z Z, et al. Laser-induced breakdown spectroscopy in Asia[J]. Frontiers of Physics, 2016, 11(6): 114213.

[3] 杨雪, 张丹, 陈安民, 等. 聚焦透镜到样品表面的距离对激光诱导硅等离子体原子谱线强度和离子谱线强度的影响[J]. 中国激光, 2019, 46(11): 1111001.

    Yang X, Zhang D, Chen A M, et al. Influence of distance between focusing lens and sample surface on atomic line and ionic line intensities of laser-induced silicon plasmas[J]. Chinese Journal of Lasers, 2019, 46(11): 1111001.

[4] Knight A K, Scherbarth N L, Cremers D A, et al. Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration[J]. Applied Spectroscopy, 2000, 54(3): 331-340.

[5] 陈安民, 何喜明, 费德厚, 等. 飞秒激光加热双层金属薄膜的理论研究[J]. 激光与光电子学进展, 2017, 54(5): 015402.

    Chen A M, He X M, Fei D H, et al. Theoretical study on femtosecond laser heating of two-layer metal films[J]. Laser & Optoelectronics Progress, 2017, 54(5): 015402.

[6] Harilal S S, Brumfield B E. LaHaye N L, et al. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis[J]. Applied Physics Reviews, 2018, 5(2): 021301.

[7] 杨文斌, 李斌成, 韩艳玲, 等. 激光诱导击穿光谱技术定量分析氩气和氮气中的痕量氧含量[J]. 中国激光, 2017, 44(10): 1011001.

    Yang W B, Li B C, Han Y L, et al. Quantitative analysis of trace oxygen concentration in argon and nitrogen based on laser-induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(10): 1011001.

[8] 蔡志龙, 杨秋松, 王阳. 铜铝合金溅射薄膜的飞秒激光诱导击穿光谱分析[J]. 中国激光, 2015, 42(6): 0615001.

    Cai Z L, Yang Q S, Wang Y. Femtosecond laser-induced breakdown spectral analysis of Cu-Al alloy sputtered thin films[J]. Chinese Journal of Lasers, 2015, 42(6): 0615001.

[9] 王金梅, 颜海英, 郑培超, 等. 基于激光诱导击穿光谱定量检测土壤中营养元素的研究[J]. 中国激光, 2017, 44(11): 1111002.

    Wang J M, Yan H Y, Zheng P C, et al. Quantitative detection of nutrient elements in soil based on laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111002.

[10] 高勋, 邵妍, 杜闯, 等. 预烧蚀激光参数对双脉冲激光诱导击穿光谱增强的影响[J]. 中国激光, 2013, 40(8): 0815003.

    Gao X, Shao Y, Du C, et al. Pre-ablation laser parameters effect on the spectral enhancement of double pulsed laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2013, 40(8): 0815003.

[11] Wang Y, Chen A M, Wang Q Y, et al. Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 034013.

[12] Wang Q Y, Chen A M, Xu W P, et al. Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 065504.

[13] Wang Y R, Jiang Y H, He X Y, et al. Triggered parallel discharge in laser-ablation spark-induced breakdown spectroscopy and studies on its analytical performance for aluminum and brass samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 150: 9-17.

[14] Tavassoli S H, Gragossian A. Effect of sample temperature on laser-induced breakdown spectroscopy[J]. Optics & Laser Technology, 2009, 41(4): 481-485.

[15] 齐洪霞, 赵亮, 金川琳, 等. 样品温度对纳秒激光诱导铝等离子体光谱强度的影响[J]. 中国激光, 2019, 46(2): 0211002.

    Qi H X, Zhao L, Jin C L, et al. Influence of sample temperature on spectral intensity of nanosecond laser-induced aluminum plasma[J]. Chinese Journal of Lasers, 2019, 46(2): 0211002.

[16] Harilal S S. O'Shay B, Tillack M S, et al. Fast photography of a laser generated plasma expanding across a transverse magnetic field[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 474-475.

[17] Lu Y, Zhou Y S, Qiu W, et al. Magnetic field enhancement for femtosecond-laser-ablation mass spectrometry in ambient environments[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(11): 2303-2306.

[18] Pandey P K, Thareja R K. Rotating copper plasmoid in external magnetic field[J]. Physics of Plasmas, 2013, 20(2): 022117.

[19] Singh K S, Sharma A K. Spatially resolved behavior of laser-produced copper plasma along expansion direction in the presence of static uniform magnetic field[J]. Physics of Plasmas, 2016, 23(12): 122104.

[20] Gao X, Liu L, Song C, et al. The role of spatial confinement on nanosecond YAG laser-induced Cu plasma[J]. Journal of Physics D: Applied Physics, 2015, 48(17): 175205.

[21] Shen X K, Sun J, Ling H, et al. Spatial confinement effects in laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2007, 91(8): 081501.

[22] Wang Q Y, Chen A M, Zhang D, et al. The role of cavity shape on spatially confined laser-induced breakdown spectroscopy[J]. Physics of Plasmas, 2018, 25(7): 073301.

[23] Shen X K, Sun J, Ling H, et al. Spectroscopic study of laser-induced Al plasmas with cylindrical confinement[J]. Journal of Applied Physics, 2007, 102(9): 093301.

[24] Guo L B, Hu W, Zhang B Y, et al. Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement[J]. Optics Express, 2011, 19(15): 14067-14075.

[25] Wang Y, Chen A M, Sui L Z, et al. Two sequential enhancements of laser-induced Cu plasma with cylindrical cavity confinement[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(10): 1974-1977.

[26] Li X W, Yang Z F, Wu J, et al. Spatial confinement in laser-induced breakdown spectroscopy[J]. Journal of Physics D: Applied Physics, 2017, 50(1): 015203.

[27] Fu Y T, Hou Z Y, Wang Z. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy[J]. Optics Express, 2016, 24(3): 3055-3066.

[28] Wang Y, Chen A M, Sui L Z, et al. Persistence of atomic spectral line on laser-induced Cu plasma with spatial confinement[J]. Physics of Plasmas, 2016, 23(11): 113105.

[29] Trautner S, Jasik J, Parigger C G, et al. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 174: 331-338.

[30] Hou H M, Mao X L, Zorba V, et al. Laser ablation molecular isotopic spectrometry for molecules formation chemistry in femtosecond-laser ablated plasmas[J]. Analytical Chemistry, 2017, 89(14): 7750-7757.

[31] Mousavi S J. HematiFarsani M, Darbani S M R, et al. CN and C2 vibrational spectra analysis in molecular LIBS of organic materials[J]. Applied Physics B, 2016, 122(5): 106.

[32] Rai S, Rai A K. Characterization of organic materials by LIBS for exploration of correlation between molecular and elemental LIBS signals[J]. AIP Advances, 2011, 1(4): 042103.

[33] LaHaye N L, Harilal S S, Diwakar P K, et al. Persistence of uranium emission in laser-produced plasmas[J]. Journal of Applied Physics, 2014, 115(16): 163301-163308.

[34] Hussein A E, Diwakar P K, Harilal S S, et al. The role of laser wavelength on plasma generation and expansion of ablation plumes in air[J]. Journal of Applied Physics, 2013, 113(14): 143305.

[35] Guo K M, Chen A M, Xu W P, et al. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy[J]. AIP Advances, 2019, 9(6): 065214.

[36] Guo L B, Li C M, Hu W, et al. Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy[J]. Applied Physics Letters, 2011, 98(13): 131501.

[37] Wang J M, Zheng P C, Liu H D, et al. Spectral characteristics of laser-induced graphite plasma in ambient air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129.

[38] Wang Q Y, Chen A M, Qi H X, et al. Influence of distance between sample surface and geometrical focal point on CN emission intensity from femtosecond laser-induced PMMA plasmas[J]. Physics of Plasmas, 2019, 26(7): 073302.

杨雪, 陈安民, 李苏宇, 姜远飞, 金明星. 平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响[J]. 中国激光, 2020, 47(8): 0811002. Yang Xue, Chen Anmin, Li Suyu, Jiang Yuanfei, Jin Mingxing. Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma[J]. Chinese Journal of Lasers, 2020, 47(8): 0811002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!