红外与毫米波学报, 2018, 37 (2): 135, 网络出版: 2018-05-29   

太赫兹InP基InAlAs/InGaAs PHEMTs的研制

Design and realization of THz InAlAs/InGaAs InP-based PHEMTs
作者单位
1 北京理工大学 毫米波与太赫兹技术北京市重点实验室,北京 100081
2 中国计量科学研究院,北京 100029
3 河北半导体研究所,河北 石家庄 050051
摘要
研制了一种T型栅长为90 nm的InP基In0.52Al0.48As/In0.65Ga0.35As赝配高电子迁移率晶体管(PHEMTs).该器件的总栅宽为2×25 μm,展现了极好的DC直流和RF射频特性,其最大饱和电流密度和最大有效跨导分别为894 mA/mm和1640 mS/mm.采用LRM+ (Line-Reflect-Reflect -Match)校准方法实现系统在1~110 GHz全频段内一次性校准,减小了传统的分段测试多次校准带来的误差, 且测试数据的连续性较好.在国内完成了器件的1~110 GHz全频段在片测试,基于1~110 GHz在片测试的S参数外推获得的截止频率ft和最大振荡频率fmax分别为252 GHz和394 GHz.与传统的测试到40 GHz外推相比,本文外推获得的fmax更加准确.这些结果的获得是由于栅长的缩短,寄生效应的减小以及1~110 GHz全频段在片测试的实现.器件的欧姆接触电阻率减小为0.035 Ω·mm.
Abstract
In this paper, 90-nm T-shaped gate InP-based In0.52Al0.48As/In0.65Ga0.35As pseudomorphic high electron mobility transistors (PHEMTs) with well-balanced cut-off frequency ft and maximum oscillation frequency fmax are reported. This device with a gate-width of 2×25 μm shows excellent DC characteristics, including a maximum saturation current density Idss of 894 mA/mm, and a maximum extrinsic transconductance gm,max of 1640 mS/mm. The off-state breakdown voltage (BVoff-state) defined at a gate current of 1mA/mm is 3.3 V. The RF measurement is carried out covering the full frequency range from 1 to 110 GHz, an extrapolated ft of 252 GHz and fmax of 394 GHz are obtained, respectively. These results are obtained by the combination of gate size scaling, parasitics reduction and the on-wafer measurement in the full frequency band from 1 to 110 GHz.
参考文献

[1] Gunnarsson Sten E, Wadefalk N, Zirath H, et al. A 220 GHz (G-Band) Microstrip MMIC Single-Ended Resistive Mixer [J]. IEEE Microwave and wireless components letters. 2008, 18(3):215-217.

[2] Leuther A, Tessmann A, Damman M, et al. 50 nm MHEMT Technology for G-and H-Band MMICs [C]. 2007 International Conference on Indium Phosphide and Related Materials. Matsue, Japan, 2007:24-27.

[3] Kim D-H, del Alamo J A. 30 nm InAs PHEMTs With Ft=644GHz and fmax=681GHz [J]. IEEE Electron Device Letters, 2010, 31(8): 806-808.

[4] Kim D-H, del Alamo J A. 30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz [J]. IEEE Electron Device Letters, 2008, 29(8): 830-833.

[5] Deal W, Mei X B, Kevin M K, et al. THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors [J]. IEEE Transactions On Terahertz Science and Technology, 2011,1(1): 25-32.

[6] Gaudenzio Meneghesso, Neviani A, Oesternolt, et al. On-state and off-state breakdown in GaInAs/InP composite-channel HEMTs with variable gaInAs channel thickness [J]. IEEE Transactions On Electron Devices, 1999, 46(1): 2-9.

[7] Bahl S R, del Alamo J A. Breakdown Voltage Enhancement from Channel Quantization in InAlAs/n+-InGaAs HFETs [J]. IEEE Electron Device Letters, 1992, 13(2):123-125.

[8] Wang Z M, Luo X B, Yu W H, et al. 2D Simulations of Kink Phenomenon in InAlAs/InGaAs/InP HEMTs [C]. IEEE 2013 International Conference on Microwave Technology & Computational Electromagnetics. Qingdao, China, 2013:320-323.

[9] Grundbacher R, Lai R, Barsky M, et al. 0.1 μm InP HEMT devices and MMICs for cryogenic low noise amplifiers from X-band to W-band simulation: 14th Indium phosphide and related material conference IPRM, 2002 [C]. Stockholm, Sweden, 2002: 455-458.

[10] Scholz R F, Korndorfer F, Senapati B, et al. Advanced technique for broadband on-wafer RF device characterization [C]. 63rd ARFTG Microwave Measurements Conference Digest Spring. 2004:83-90.

[11] Voinigescu S P, Dacquay E, Adinolfi V, et al. Characterization and Modeling of an SiGe HBT technology for transceiver applications in the 100-300 GHz range [J]. IEEE Trans Micro Theory Tech, 2012,60(12):4024.

[12] Zhong Y H, Wang X T, Su Y B, et al. High performance InP-based InAlAs/InGaAs HEMTs with extrinsic transconductance of 1052 mS/mm [J]. Journal of Infrared and Millimeter Waves, 2013, 32(3):193-197.

[13] Zhong Y H, Zhang Y M, Zhang Y M, et al. 0.15 μm T-gate In0.52Al0.48As/In0.53Ga0.47As InP-based HEMT with fmax of 390 GHz [J]. Chin. Phys. B, 2013, 22(12):128503.

[14] Liu C H, Mei X B, Chou Y C, et al. Sub-mW operation of InP HEMT X-band Low-Noise amplifiers for low power applications[C]. 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium, Oct 11–14, 2009, Greensboro, USA, p. 1.

[15] Liu L, Alt A R, Benedickter H, et al. InP-HEMT X-band low-noise amplifier with ultralow 0.6 mW power consumption [J]. IEEE Electron Device Letter. 2012, 33(2), 209-211.

[16] Tessmann A. 220 GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications [J]. IEEE Journal of Solid-State Circuits. 2005,40(10):2070-2076.

[17] Zhong Y H, Wang X T, Su Y B, et al. An 88 nm gate-length In0.53Ga0.47As/In0.52Al0.48As InP-based HEMT with fmax of 201 GHz [J]. Journal of Semiconductors, 2012, 33(7):074004.

[18] Smith D, Dambrine G, Orlhac J-C. Industrial MHEMT technologies for 80~220 GHz applications [C]. Proceedings of the 3rd European Microwave Integrated Circuits Conference. Amsterdam, The Netherlands, 2008: 214-217.

王志明, 黄辉, 胡志富, 赵卓彬, 崔玉兴, 孙希国, 李亮, 付兴昌, 吕昕. 太赫兹InP基InAlAs/InGaAs PHEMTs的研制[J]. 红外与毫米波学报, 2018, 37(2): 135. WANG Zhi-Ming, HUANG Hui, HU Zhi-Fu, ZHAO Zhuo-Bin, CUI Yu-Xing, SUN Xi-Guo, LI Liang, FU Xing-Chang, LYU Xin. Design and realization of THz InAlAs/InGaAs InP-based PHEMTs[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 135.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!