光学学报, 2017, 37 (10): 1029002, 网络出版: 2018-09-07  

球形亚波长粒子中心偏移对散射隐失波光谱密度分布的影响 下载: 750次

Influence of Sub-Wavelength Spherical Particle Center Offset on Spectral Density Distribution of Scattered Evanescent Waves
作者单位
1 中国科学院合肥物质科学研究院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
3 中国科学院合肥物质科学研究院应用技术研究所, 安徽 合肥 230031
摘要
基于散射势理论和弱散射一阶玻恩近似条件,研究了球形亚波长粒子的中心位置偏离和边界条件对散射隐失波光谱密度分布的影响。对散射光的近场分量进行角谱展开,得出了隐失波复振幅的二重积分表达式。利用数值积分方法对角度和径向参量进行积分,得出了隐失波光谱密度与散射体参数之间的关联分布特征。结果显示,在散射体有效半径之内,散射隐失波包含了散射体中心位置和边界条件的特征信息,而该信息将随着传输距离的增大很快消逝。该研究结果有助于复杂空间结构微小粒子的探测和结构反演等。
Abstract
Based on the scattering potential theory and the first-order Born approximation condition of weak scattering, the influences of the center position offsets and the boundary condition variations of the sub-wavelength spherical particles on the spectral density distribution of the scattered evanescent waves are studied. The near-field components of the scattering light are expanded in the angular spectra, and the double integral expression of the complex amplitude of evanescent waves is obtained. The angular and radial parameters are integrated with the numerical integral method, and the related distribution characteristics between the spectral density of evanescent waves and the scattering parameters are obtained. The results show that the scattered evanescent waves contain the characteristic informations of the center positions and the boundary conditions of the scattered particles whose radii are within the range of the effective scattering radius. These informations disappear rapidly with the increase of propagation distance. The study results are conducive for the detection and structural inversion of tiny particles with complex spatial structures.

1 引言

隐失波在近场探测和成像技术等领域中有着重要应用,特别是在新型显微成像技术领域,如全内反射荧光显微镜[1]等。国内学者于90年代起对近场光学显微镜所需的近场光学理论进行了相关研究[2],基于隐失波的光学成像也被用于各种亚波长物体的结构探测中[3]。特别是在近几年,超分辨率成像技术得到飞速发展,利用隐失波或其他方法实现衍射极限突破的显微成像方法成为热门的研究方向之一[4-9]

未知结构物体的光学探测需要先对已知规则结构物体的光学反射、散射性质进行深入计算和分析,进而根据已掌握的散射特性信息,利用散射光性质来复原物体的原有结构,即所谓的逆散射方法。近年来,基于散射势理论,此方法得到了深入研究和极大发展,并被成功地应用于各种确定或随机散射介质的散射场分析中。对逆散射问题的研究,一方面是对各种具有不同边界条件和散射尺寸的介质散射体进行散射势建模[10],对随机性散射介质的散射矩阵进行计算分析[11];另一方面主要集中在对散射场光学性质的研究,包括光谱密度、偏振变化、相干度变化等[12-26],此类研究大都建立在远场散射近似的基础上,即只考虑散射光的均匀波分量。而严格的光传输理论证明,均匀的平面入射光波被散射后应包含均匀波和隐失波两个分量[27-28],其中隐失波传输局限在近场范围,且随着距离的增大呈指数衰减,因而在大多数远场散射问题中可以忽略隐失波分量。但对于亚波长物体的光学探测和成像,即在近场光学应用中,需要对隐失波进行精确计算与分析。近年来,通过对出射格林函数作近场近似,以及对介质散射势作三维傅里叶变换,可以获得隐失场分布与散射介质信息的关联解析式[29]。Li等[30-32]分析了散射粒子边界条件对高斯型光源的散射隐失波光谱的影响。Chen等[33-34]分析了各向同性和各向异性微小粒子的近场散射,导出了光谱密度与散射体有效曲率半径及边界条件之间的关系。以上结论也证明了隐失波的近场光谱密度分布(谱移曲线)包含有散射介质本身性质的信息,因此可以通过负折射率材料或其他方法来增益或者将隐失波转换为均匀波,以实现亚波长探测[35]

在上述研究中,散射体位置都固定且为入射光中心位置。而在大多数实际探测中,散射体的中心(如圆形粒子的球心)通常会存在一定的偏移量,这些偏移量对散射隐失波在传输方向和横向分布的影响有待研究。因此,本文将边界条件可调的球形粒子散射势模型扩展为在三维坐标上均有偏移的各向同性的广义散射势模型,从而构建了近场隐失波计算的积分公式,并推演出其三维空间傅里叶变换散射势的角谱分布表达式,继而利用二维数值积分,对具有不同散射体中心偏移量的散射场分布进行了对比分析,总结了不同方向的中心偏移对隐失场光谱密度以及横向分布的影响规律。

2 主要工作内容与结果

2.1 球形粒子中心偏移的近场弱散射模型

考虑归一化振幅的单色入射平面波U(r',ω0)=exp(ik0r'·s0),其中r'为散射场点的位置矢量,ω0为角频率,k0为波数,s0为平面波入射方向的单位矢量。利用弱散射一阶波恩近似条件,散射场可表示为入射长与介质散射势、格林函数的积分,即

Us(r',ω0)=DF(r',ω0)Ui(r,ω0)G(r,r',ω0)d3r',(1)

式中U(i)(r,ω0)为入射场;r为源点的位置矢量,其长度为r; r'r'的长度值;G(r,r',ω0)为格林函数;F(r',ω0)为介质散射势函数;U(s)(r',ω0)为散射场;D为散射体体积。令投影矢量s=(sx,sy,sz),为计算近场范围内的散射场分布,格林函数通常展开为

G(r,r',ω0)=exp(ik0r-r')r-r'=ik02πD1szexp{ik0[s·(ρ-ρ')+szz-z']}d2s,(2)sz=(1-s2)12,s21i(s2-1)12,s21,(3)

式中投影矢量s=(sx,sy,sz)在入射面上的分量s=(sx,sy,0),s为其长度值;源点位置矢量r=(ρ,z),散射场点位置矢量r'=(ρ',z'),其中ρρ'分别为rr'的横向分量,其长度分别为ρρ',zz'分别为源点与散射场点z方向上的坐标。(2)式为格林函数的近场角谱展开形式,对于散射场而言, s2≤1的分量为均匀波,而 s2≥1的分量为隐失波。将(2)式代入(1)式,并将积分以角谱形式展开,可得到

Us(r,ω0)=-+-+as(s,ω0)×exp[ik0(s·ρ'+szz)]d2s,(4)aes(s,ω0)=ik08π2szDF(r',ω0)exp{-ik0[s·ρ'+(sz-1)z']}d3r'(5)

当考虑隐失波分量时,取sz=i (s2-1)12,则(5)式的光谱振幅 aes(s,ω0)可以用介质散射势的傅里叶变换函数表示,即

aes(s,ω0)=πk0(s2-1)12F~{k0sx,k0sy,k0is2-1)12-1]},(6)

式中 F~{k0sx,k0sy,k0[i (s2-1)12-1]}为介质散射势的三维傅里叶变换,具体表达式为

F~(K,ω0)=12π3DF(r',ω0)exp(-iK·r')d3r',(7)

式中K为三维波矢量。

参照Sahin等[10]的工作,位置矢量(即中心位置)为l=(lx,ly,lz)、边界条件可调的球形粒子的散射势可以表示为

F(r,ω)=1C0m=1M(-1)m-1MMmexp-m(x-lx)2+(y-ly)2+(z-lz)22σ2,(8)

式中C0=m=1M(-1)m-1MMm为函数的权重系数,σ为散射体的有效半径,M为边界系数,整数m=1,2,…,MM=1代表完全“软”边界粒子,M=∞代表完全“硬”边界粒子,而M∈(1,+∞)的粒子属于“半软边界粒子”,即可通过调整M改变粒子的边界条件。对(8)式进行(5)式的变换,得到其角谱形式分布的三维傅里叶变换表达式,即

F~{k0sx,k0sy,k0is2-1)12-1]}=1C0m=1M(-1)m-1MMmσ3(2π)32(s2-1)12m32exp{-ik0(sxlx+syly)-k02σ22m(sx2+sy2)+12mmlzσ+ik0σ+k0σ(s2-1)122-mlz22σ2}(9)

综合(5)式和(8)式,当 s2≥1时,光谱振幅的表达式为

aes(s,ω0)=1C0m=1M(-1)m-1MMmk0σ38π(s2-1)12m32exp{-ik0(sxlx+syly)-k02σ22m(sx2+sy2)+12mmlzσ+ik0σ+k0σ(s2-1)122-mlz22σ2}(10)

利用极坐标转换公式对(9)式进行转换:

d2s=sdssx=scosθsy=ssinθ,(11)

得到散射隐失场的光强分布表达式为

Ues=k0σ38πC0m=1M(-1)m-1Mm32Mm102πs(s2-1)12exp{-ik0s(cosθlx-ρcosθ+sinθly)-σ2k022ms2-k0(s2-1)12z-mlz22σ2+12mmlzσ+ik0σ+k0σ(s2-1)122}ds(12)

(12)式为中心偏移粒子的中心近场散射光场的积分表达式。为了得出最后的光谱密度,即Ie=Ues2,进一步利用数值积分算法进行双重积分,得出散射体的中心偏移对隐失波分布的影响。假设粒子中心在三维方向上均有偏移,如图1(a)所示,其中λ为波长。同时图1(b)、(c)分别给出了不同边界条件的散射体在

图 1. 中心偏移的球形散射体分布示意图。(a)中心偏移粒子;(b)M=1时x方向的散射势分布;(c)M=6时x方向的散射势分布

Fig. 1. Schematic of distribution of spherical scattering body with center offset. (a) Particle with center offset; (b) scattering potential distribution in x direction for M=1; (c) scattering potential distribution in x direction for M=6

下载图片 查看所有图片

x方向位移上的散射势分布。

2.2 隐失波分布曲线特征变化的数值模拟实验与分析

图1所示,对于三维散射介质而言,其中心的相对位移有8种基本情况,在仿真实验中,设定其单一方向上的偏移量为0.5σ。通过数值积分模拟了在固定的横向距离处,隐失波的光谱密度随传输距离的变化曲线,结果如图2所示,其中用不同的颜色和线型组合表示散射体中心在三维方向上的偏移,同时传输距离限制在0.1λ~λ。其他条件参数的设定为:λ=532 nm,σ=0.2λ,设置横向坐标点分别为ρ=0和ρ=0.5σ,边界条件为M=1和M=5。

图 2. 随着传输距离的增加,球形散射体的位置偏离以及边界条件对隐失波光谱密度的影响。(a) M=1, ρ=0; (b) M=5, ρ=0; (c) M=1, ρ=0.5σ; (d) M=5, ρ=0.5σ

Fig. 2. Influences of position offsets and boundary conditions of spherical scattering particles on spectral densities of evanescent waves with increase of propagation distance. (a) M=1, ρ=0; (b) M=5, ρ=0; (c) M=1, ρ=0.5σ; (d) M=5, ρ=0.5σ

下载图片 查看所有图片

图2揭示了隐失波随传输距离的增加呈指数衰减的统一规律,隐失波的光谱密度在λ范围内衰减2~3个数量级。而对于具有不同中心偏移量的散射体,纵向位移对衰减曲线的影响最为明显,表现为图2(a)~(d)中蓝色和红色曲线组的明显差别。可以发现,在0~0.5λ的范围内,当散射体纵向有0.5σ的位移时,隐失波的整体光谱密度比中心点无偏移散射体时要高1~2个数量级,而传输至λ之后,两者的光谱密度趋于相同。此外,对比图2(a)、(b)以及图2(c)、(d)中不同线型的曲线可以发现,当ρ=0.5σ时,在同一纵向截平面内,不同中心位置散射体的衰减曲线有更为明显的区别,这种差别在软边界条件即M=1下更为明显,而在半软边界条件即M=5下差别较小。这种现象揭示了横向光谱密度与边界条件的密切联系。两种边界条件的散射体在不同距离点的横向光谱密度分布如图3、4所示。

图 3. 当M=1时,球形粒子位置偏离对不同传输距离处横向光谱密度分布的影响。(a) z=0.1λ; (b) z=0.2λ; (c) z=0.3λ; (d) z=0.5λ

Fig. 3. Influence of position offset of spherical particles on transverse spectral density distributions at different propagation distances when M=1. (a) z=0.1λ; (b) z=0.2λ; (c) z=0.3λ; (d) z=0.5λ

下载图片 查看所有图片

通过图3(a)可以发现,散射体中心在x方向上的位移表现为横向光谱密度曲线的相对移动,如图3(a)红色和蓝色线所示,而在y方向上的位移则表现为光谱密度值的减少,如图3(a)绿色和黑色线所示。当散射体中心有z方向上的位移时,如图3(b)所示,出现分布曲线特征的变化。其中,当y方向位移为0时,整个曲线呈平顶分布,如图3(b)红色和蓝色线所示;而当y方向上位移为0.5σ时,光谱密度分布向中心区域集中的程度更高。这些特征表明,在z=0.5λ处,散射体中心在各个方向的微小移动均对应着显著的光强分布特征。而图3(c)~(d)则展现了当传输距离增大到z=0.5λ时,横向光谱密度分布曲线变得更为平缓,不同分布的曲线更为接近,说明当z增大时,散射隐失波所携带的散射体中心位移特征会逐渐消失,最终隐失波的光谱密度曲线趋于一致。

图4(a)、(b)所示的传输距离在粒子的有效散射半径z=0.1λ之内,当粒子中心的纵向偏离为0.5σ时(即红色曲线组),相对于图3(a)、(b)而言,光谱密度数值增大了一个数量级,约为10-41量级。而当纵向位移为0时,其分布曲线的特征与软边界粒子相似,但当纵向位移为0.5σ时,光谱密度曲线的特征则与软边界粒子的有明显不同。当传输距离扩展到z=0.5λ时,如图4(c)、(d)所示,曲线的分布形式又趋于相同。这说明当传输距离增大到半个波长时,散射体中心偏移的特征以及边界条件的变化所引起的散射隐失波的分布特征都会消失。

图 4. 当M=5时,球形粒子位置偏离对不同传输距离处横向光谱密度分布的影响。(a) z=0.1λ; (b) z=0.2λ; (c) z=0.3λ; (d) z=0.5λ

Fig. 4. Influence of position offset of spherical particles on transverse spectral density distributions at different propagation distances when M=5. (a) z=0.1λ; (b) z=0.2λ; (c) z=0.3λ; (d) z=0.5λ

下载图片 查看所有图片

3 结论

利用各向同性散射势函数,对具有不同中心偏离方式的球形粒子的近场散射隐失波进行了研究,并对传输方向横向光谱密度的分布进行了计算,得到粒子中心位置在三个方向上的偏移对散射隐失波光强分布的影响。粒子在z方向上的中心位移对隐失波随距离的衰减曲线有明显影响,而粒子在xy方向上的中心偏移对总体衰减曲线的影响不大。边界条件对分布曲线的影响主要体现为散射光谱密度值的大小变化,而对整体的曲线分布特征无明显影响。这是由于采用了高斯模型的线性叠加来描述散射势的不同空间分布形式。

通过对散射势的三维空间傅里叶变换,分析了散射场的近场分量与不同边界条件粒子中心位置的关联。结果显示,不同的偏移矢量对光谱密度的分布产生了不同的影响,隐失场的三维分布包含了散射体的三维结构信息。这种包含信息的散射场局限在散射体的有效半径范围内,随着传输距离的增大结构信息将丢失。这一结论对于纳米量级物体的超分辨率结构探测和成像的应用有一定的理论指导价值。

参考文献

[1] Wolf E. Statistical similarity as a unifying concept of the theories of coherence and polarization of light[J]. Optics Communications, 2010, 283(22): 4427-4429.

    Wolf E. Statistical similarity as a unifying concept of the theories of coherence and polarization of light[J]. Optics Communications, 2010, 283(22): 4427-4429.

[2] Lahiri M, Wolf E. Implications of complete coherence in the space-frequency domain[J]. Optics Letters, 2011, 36(13): 2423-2425.

    Lahiri M, Wolf E. Implications of complete coherence in the space-frequency domain[J]. Optics Letters, 2011, 36(13): 2423-2425.

[3] Chen J, Chen Y, Chen F, et al. Physical significance of complete coherence and complete polarization of random electromagnetic beams in the space-frequency domain[J]. Optics and Laser Technology, 2013, 47(7): 174-178.

    Chen J, Chen Y, Chen F, et al. Physical significance of complete coherence and complete polarization of random electromagnetic beams in the space-frequency domain[J]. Optics and Laser Technology, 2013, 47(7): 174-178.

[4] 彭鼎铭, 付志飞, 徐平勇. 荧光蛋白与超分辨率成像[J]. 光学学报, 2017, 37(3): 0318001.

    彭鼎铭, 付志飞, 徐平勇. 荧光蛋白与超分辨率成像[J]. 光学学报, 2017, 37(3): 0318001.

    Peng Dingming, Fu Zhifei, Xu Pingyong. Fluorescent proteins and super-resolution microscopy[J]. Acta Physica Sinica, 2017, 37(3): 0318001.

    Peng Dingming, Fu Zhifei, Xu Pingyong. Fluorescent proteins and super-resolution microscopy[J]. Acta Physica Sinica, 2017, 37(3): 0318001.

[5] 文刚, 李思黾, 杨西斌, 等. 基于激光干涉的结构光照明超分辨荧光显微镜系统[J]. 光学学报, 2017, 37(3): 0318003.

    文刚, 李思黾, 杨西斌, 等. 基于激光干涉的结构光照明超分辨荧光显微镜系统[J]. 光学学报, 2017, 37(3): 0318003.

    Wen Gang, Li Simin, Yang Xibin, et al. Super-resolution fluorescence microscopy system by structured light illumination based on laser interference[J]. Acta Physica Sinica, 2017, 37(3): 0318003.

    Wen Gang, Li Simin, Yang Xibin, et al. Super-resolution fluorescence microscopy system by structured light illumination based on laser interference[J]. Acta Physica Sinica, 2017, 37(3): 0318003.

[6] 王琛, 袁景和, 王桂英, 等. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响[J]. 物理学报, 2003, 52(12): 3014-3019.

    王琛, 袁景和, 王桂英, 等. 入射光的偏振特性对全内反射荧光显微术中荧光激发的影响[J]. 物理学报, 2003, 52(12): 3014-3019.

    Wang Chen, Yuan Jinghe, Wang Guiying, et al. The influence of polarized light on fluorescence emission in total internal reflection microscopy[J]. Acta Physica Sinica, 2003, 52(12): 3014-3019.

    Wang Chen, Yuan Jinghe, Wang Guiying, et al. The influence of polarized light on fluorescence emission in total internal reflection microscopy[J]. Acta Physica Sinica, 2003, 52(12): 3014-3019.

[7] 王桂英. 近场光学理论初探[J]. 物理学报, 1997, 46(11): 2154-2159.

    王桂英. 近场光学理论初探[J]. 物理学报, 1997, 46(11): 2154-2159.

    Wang Guiying. Preliminary study on the near field optics[J]. Acta Physica Sinica, 1997, 46(11): 2154-2159.

    Wang Guiying. Preliminary study on the near field optics[J]. Acta Physica Sinica, 1997, 46(11): 2154-2159.

[8] 张成义, 陶纯堪. 一维亚波长周期结构物成像的光子学研究[J]. 光学学报, 2006, 26(11): 1651-1656.

    张成义, 陶纯堪. 一维亚波长周期结构物成像的光子学研究[J]. 光学学报, 2006, 26(11): 1651-1656.

    Zhang Chengyi, Tao Chunkan. Photonic study on imaging of one-dimensional periodic object with subwavelength structure[J]. Acta Optica Sinica, 2006, 26(11): 1651-1656.

    Zhang Chengyi, Tao Chunkan. Photonic study on imaging of one-dimensional periodic object with subwavelength structure[J]. Acta Optica Sinica, 2006, 26(11): 1651-1656.

[9] Carney P S, Schotland J C. Three-dimensional total internal reflection microscopy[J]. Optics Letters, 2001, 26(14): 1072-1074.

    Carney P S, Schotland J C. Three-dimensional total internal reflection microscopy[J]. Optics Letters, 2001, 26(14): 1072-1074.

[10] Korotkova O, Sahin S, Shchepakina E. Light scattering by three-dimensional objects with semi-hard boundaries[J]. JOSA A, 2014, 31(8): 1782-1787.

    Korotkova O, Sahin S, Shchepakina E. Light scattering by three-dimensional objects with semi-hard boundaries[J]. JOSA A, 2014, 31(8): 1782-1787.

[11] Sahin S, Gbur G, Korotkova O. Scattering of light from particles with semisoft boundaries[J]. Optics Letters, 2011, 36(20): 3957-3959.

    Sahin S, Gbur G, Korotkova O. Scattering of light from particles with semisoft boundaries[J]. Optics Letters, 2011, 36(20): 3957-3959.

[12] Fischer D G, Wolf E. Inverse problems with quasi-homogeneous random media[J]. JOSA A, 1994, 11(3): 1128-1135.

    Fischer D G, Wolf E. Inverse problems with quasi-homogeneous random media[J]. JOSA A, 1994, 11(3): 1128-1135.

[13] Visser T D, Fischer D G, Wolf E. Scattering of light from quasi-homogeneous sources by quasi-homogeneous media[J]. JOSA A, 2006, 23(7): 1631-1638.

    Visser T D, Fischer D G, Wolf E. Scattering of light from quasi-homogeneous sources by quasi-homogeneous media[J]. JOSA A, 2006, 23(7): 1631-1638.

[14] Korotkova O, Wolf E. Scattering matrix theory for stochastic scalar fields[J]. Physical Review E, 2007, 75(5): 056609.

    Korotkova O, Wolf E. Scattering matrix theory for stochastic scalar fields[J]. Physical Review E, 2007, 75(5): 056609.

[15] Li J, Korotkova O. Scattering of light from stationary non-uniformly correlated medium[J]. Optics Letters, 2016, 41(11): 2616-2619.

    Li J, Korotkova O. Scattering of light from stationary non-uniformly correlated medium[J]. Optics Letters, 2016, 41(11): 2616-2619.

[16] Ding C, Cai Y, Korotkova O, et al. Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse[J]. Optics Letters, 2011, 36(4): 517-519.

    Ding C, Cai Y, Korotkova O, et al. Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse[J]. Optics Letters, 2011, 36(4): 517-519.

[17] Li J, Wu P, Chang L. Analysis of the far-field characteristics of hybrid polarized vector beams from the vectorial structure[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 169: 127-134.

    Li J, Wu P, Chang L. Analysis of the far-field characteristics of hybrid polarized vector beams from the vectorial structure[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 169: 127-134.

[18] Li J, Chen F, Chang L. Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium[J]. Optics Express, 2016, 24(21): 24274-24286.

    Li J, Chen F, Chang L. Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium[J]. Optics Express, 2016, 24(21): 24274-24286.

[19] Li J, Korotkova O. Scattering of light from a stationary nonuniformly correlated medium[J]. Optics Letters, 2016, 41(11): 2616-2619.

    Li J, Korotkova O. Scattering of light from a stationary nonuniformly correlated medium[J]. Optics Letters, 2016, 41(11): 2616-2619.

[20] Li J, Wu P, Qin Y, et al. Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium[J]. IEEE Photonics Journal, 2016, 8(2): 1-13.

    Li J, Wu P, Qin Y, et al. Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium[J]. IEEE Photonics Journal, 2016, 8(2): 1-13.

[21] Li J, Wu P. Determination of correlation function of scattering potential of quasi-homogeneous medium by Young's pinhole configuration[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 179: 126-131.

    Li J, Wu P. Determination of correlation function of scattering potential of quasi-homogeneous medium by Young's pinhole configuration[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 179: 126-131.

[22] Chen J, Chen F, Chen Y, et al. Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 131: 66-71.

    Chen J, Chen F, Chen Y, et al. Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 131: 66-71.

[23] Yu J, Li J. Reciprocal relations for light from Young's pinholes scattering upon a quasi-homogeneous medium[J]. Laser Physics Letters, 2017, 14(5): 056003.

    Yu J, Li J. Reciprocal relations for light from Young's pinholes scattering upon a quasi-homogeneous medium[J]. Laser Physics Letters, 2017, 14(5): 056003.

[24] Li J, Chen F, Chang L. Weak scattering of Young's diffractive light wave from a spatially deterministic medium[J]. IEEE Photonics Journal, 2016, 8(6): 1-8.

    Li J, Chen F, Chang L. Weak scattering of Young's diffractive light wave from a spatially deterministic medium[J]. IEEE Photonics Journal, 2016, 8(6): 1-8.

[25] Chang L, Li J. Reciprocal relations for third-order correlation between intensity fluctuations of light scattered from a quasi-homogeneous medium[J]. IEEE Photonics Journal, 2017, 9(2): 1-10.

    Chang L, Li J. Reciprocal relations for third-order correlation between intensity fluctuations of light scattered from a quasi-homogeneous medium[J]. IEEE Photonics Journal, 2017, 9(2): 1-10.

[26] Li J, Chen F. Correlation between intensity fluctuations of light generated by scattering of Young's diffractive electromagnetic waves by a quasi-homogeneous, anisotropic medium[J]. Laser Physics Letters, 2016, 13(11): 116004.

    Li J, Chen F. Correlation between intensity fluctuations of light generated by scattering of Young's diffractive electromagnetic waves by a quasi-homogeneous, anisotropic medium[J]. Laser Physics Letters, 2016, 13(11): 116004.

[27] 波恩, 沃尔夫. 光学原理( 第七版)[M]. 杨葭孙, 译. 北京: 电子工业出版社, 2013: 583- 587.

    波恩, 沃尔夫. 光学原理( 第七版)[M]. 杨葭孙, 译. 北京: 电子工业出版社, 2013: 583- 587.

    BornM, WolfE. Principles of optics (seventh edition)[M]. Yang Jiasun, translated. Beijing: Publishing House of Electronics Industry, 2013: 583- 587.

    BornM, WolfE. Principles of optics (seventh edition)[M]. Yang Jiasun, translated. Beijing: Publishing House of Electronics Industry, 2013: 583- 587.

[28] Felsen L B. Evanescent waves[J]. JOSA, 1976, 66(8): 751-760.

    Felsen L B. Evanescent waves[J]. JOSA, 1976, 66(8): 751-760.

[29] Fischer D G. The information content of weakly scattered fields: Implications for near-field imaging of three-dimensional structures[J]. Journal of Modern Optics, 2000, 47(8): 1359-1374.

    Fischer D G. The information content of weakly scattered fields: Implications for near-field imaging of three-dimensional structures[J]. Journal of Modern Optics, 2000, 47(8): 1359-1374.

[30] Li J, Chang L, Wu Z. Near-field evanescent waves scattered from a spatially deterministic and anisotropic medium[J]. Optics Letters, 2015, 40(12): 2680-2683.

    Li J, Chang L, Wu Z. Near-field evanescent waves scattered from a spatially deterministic and anisotropic medium[J]. Optics Letters, 2015, 40(12): 2680-2683.

[31] Li J, Wu P, Chang L. Spectral properties of near-field evanescent waves scattered from a particulate medium with adjustable boundaries[J]. IEEE Photonics Journal, 2016, 8(1): 1-9.

    Li J, Wu P, Chang L. Spectral properties of near-field evanescent waves scattered from a particulate medium with adjustable boundaries[J]. IEEE Photonics Journal, 2016, 8(1): 1-9.

[32] Li J, Wu P, Chang L. Near-zone evanescent waves generated by weak scattering of light from a spatially deterministic medium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 170: 1-7.

    Li J, Wu P, Chang L. Near-zone evanescent waves generated by weak scattering of light from a spatially deterministic medium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 170: 1-7.

[33] Chen F, Li J. Near-field scattering of light from a hollow particle with a semisoft boundary[J]. IEEE Photonics Journal, 2016, 8(4): 1-10.

    Chen F, Li J. Near-field scattering of light from a hollow particle with a semisoft boundary[J]. IEEE Photonics Journal, 2016, 8(4): 1-10.

[34] Chen F, Li J. Scattering properties of near-field evanescent wave from medium with ellipsoidal and cylindrical distributions[J]. IEEE Photonics Journal, 2017, 9(1): 1-11.

    Chen F, Li J. Scattering properties of near-field evanescent wave from medium with ellipsoidal and cylindrical distributions[J]. IEEE Photonics Journal, 2017, 9(1): 1-11.

[35] Grbic A, Eleftheriades G V. Growing evanescent waves in negative-refractive-index transmission-line media[J]. Applied Physics Letters, 2003, 82(12): 1815-1817.

    Grbic A, Eleftheriades G V. Growing evanescent waves in negative-refractive-index transmission-line media[J]. Applied Physics Letters, 2003, 82(12): 1815-1817.

陈斐楠, 陈晶晶, 戚俊. 球形亚波长粒子中心偏移对散射隐失波光谱密度分布的影响[J]. 光学学报, 2017, 37(10): 1029002. Feinan Chen, Jingjing Chen, Jun Qi. Influence of Sub-Wavelength Spherical Particle Center Offset on Spectral Density Distribution of Scattered Evanescent Waves[J]. Acta Optica Sinica, 2017, 37(10): 1029002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!