光学学报, 2017, 37 (4): 0434001, 网络出版: 2017-04-10   

铋光栅X射线相衬成像条纹对比度的定量计算 下载: 514次

Quantitative Calculation of Fringe Visibility in Bismuth Grating-Based X-Ray Phase-Contrast Imaging
作者单位
1 深圳大学光电工程学院广东省/教育部光电子器件与系统重点实验室, 广东 深圳 518060
2 深圳大学信息工程学院, 广东 深圳 518060
摘要
吸收光栅是X射线相衬成像系统的关键器件,铋吸收光栅由于其制作成本低廉且适于在普通实验室开展制作而受到青睐。提出了一种针对铋光栅X射线相衬成像条纹对比度的定量计算方法,通过建立模型,数值计算了不同铋层厚度的吸收光栅所对应的叠栅条纹对比度,并比较了π和π/2相位光栅两种情形下的结果。结果显示,随着吸收光栅铋层厚度的增加,条纹对比度逐渐增加,当源光栅和分析光栅的铋层厚度分别达到150 μm和110 μm时,利用π相位光栅在40 kV管电压下其条纹对比度可达48%,60 kV管电压下其条纹对比度只能达到22%。而在两个吸收光栅铋层厚度相同的情况下,采用π/2相位光栅所得条纹对比度略优于π相位光栅的结果。对铋光栅X射线相衬成像条纹对比度的计算分析,可作为X射线相衬成像系统设计的参考依据,推动该成像技术走向实用化。
Abstract
Absorption gratings are the key devices in grating-based X-ray phase-contrast imaging (XPCI). The low cost and fitness for the fabrication in general laboratories make bismuth absorption grating favored. A calculating method for fringe visibility in bismuth grating-based XPCI is proposed, and the moire fringe visibilities of bismuth absorption gratings with different thicknesses are calculated through modeling. Results show that fringe visibility increases with the increasing thickness of bismuth structure. The fringe visibility for π phase grating can reach 48% under the 40 kV tube voltage, but only 22% under 60 kV, when the thicknesses of bismuth structure in source gratings and analyzer gratings are 150 μm and 110 μm, respectively. Furthermore, when the bismuth structure thicknesses of the two absorption gratings are equivalent, fringe visibilities are obtained by use of the π phase and π/2 phase gratings, respectively. Their quantitative comparison shows that the result of employing π/2 phase grating is slightly better than that of π phase grating. The quantitative calculation of fringe visibility will be beneficial to the design of grating-based XPCI system, which may promote the practicality of this technology.
参考文献

[1] Henke B L, Gullikson E M, Davis J C, et al. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z=1-92[J]. Atomic Data and Nuclear Data Tables, 1993, 54(2): 181-342.

[2] Momose A. Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer[J]. Nuclear Instruments and Methods in Physics Research A, 1995, 352(3): 622-628.

[3] Bonse U, Hart M. An X-ray interferometer[J]. Applied Physics Letters, 1965, 6(8): 155-156.

[4] Davis T J, Gao D, Gureyev T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 1995, 373(6515): 595-598.

[5] Wilkins S W, Gureyev T E, Gao D, et al. Phase-contrast imaging using polychromatic hard X-rays[J]. Nature, 1996, 384(6607): 335-338.

[6] David C, Nhammer B, Solak H H, et al. Differential X-ray phase contrast imaging using a shearing interferometer[J]. Applied Physics Letters, 2002, 81(17): 3287-3289.

[7] Pfeiffer F, Weitkamp T, Bunk O, et al. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources[J]. Nature Physics, 2006, 2(4): 258-261.

[8] Pfeiffer F, Bech M, Bunk O, et al. Hard X-ray dark-field imaging using a grating interferometer[J]. Nature Materials, 2008, 7(2): 134-137.

[9] Stampanoni M, Wang Z, Thüring T, et al. The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography[J]. Investigative Radiology, 2011, 46(12): 801-806.

[10] Momose A, Yashiro W, Kido K, et al. X-ray phase imaging: from synchrotron to hospital[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2010): 20130023.

[11] Du Y, Liu X, Lei Y, et al. Non-absorption grating approach for X-ray phase contrast imaging[J]. Optics Express, 2011, 19(23): 22669-22674.

[12] 戚俊成, 任玉琦, 杜国浩, 等. 基于X射线光栅成像的多衬度显微计算层析系统[J]. 光学学报, 2013, 33(10): 1034001.

    Qi Jun cheng, Ren Yuqi, Du Guohao, et al. Multiple contrast micro-computed tomography system based on X-ray grating imaging[J]. Acta Optica Sinica, 2013, 33(10): 1034001.

[13] 李新斌, 陈志强, 张 丽, 等. 基于X射线光栅相衬成像的乳腺癌诊断技术的现状和发展前景[J]. 中国体视学与图像分析, 2015, 20(4): 305-318.

    Li Xinbin, Chen Zhiqiang, Zhang Li, et al. The status and development prospect of the diagnosis of breast cancer based on grating-based X-ray phase-contrast imaging[J]. Chinese Journal of Stereology and Image Analysis, 2015, 20(4): 305-318.

[14] 杜 杨, 刘 鑫, 雷耀虎, 等. 低成本高效率X射线相衬成像技术研究[J]. 光学学报, 2016, 36(3): 0334001.

    Du Yang, Liu Xin, Lei Yaohu, et al. Low cost and high efficiency method for X-ray phase contrast imaging[J]. Acta Optica Sinica, 2016, 36(3): 0334001.

[15] Wang S, Margie P O, Atsushi M, et al. Experimental research on the feature of an X-ray Talbot-Lau interferometer vs. tube accelerating voltage[J]. Chinese Physics B, 2015, 24(6): 068703.

[16] Donath T, Pfeiffer F, Bunk O, et al. Phase-contrast imaging and tomography at 60 keV using a conventional X-ray tube source[J]. Review of Scientific Instruments, 2009, 80(5): 053701.

[17] David C, Bruder J, Rohbeck T, et al. Fabrication of diffraction gratings for hard X-ray phase contrast imaging[J]. Microelectronic Engineering, 2007, 84(5-8): 1172-1177.

[18] Matsumoto M, Takiguchi K, Tanaka M, et al. Fabrication of diffraction grating for X-ray Talbot interferometer[J]. Microsystem Technologies, 2007, 13(5): 543-546.

[19] Rutishauser S, Bednarzik M, Zanette I, et al. Fabrication of two dimensional hard X-ray diffraction gratings[J]. Microelectronic Engineering, 2013, 101: 12-16.

[20] Lei Y, Du Y, Li J, et al. Application of Bi absorption gratings in grating-based X-ray phase contrast imaging[J]. Applied Physics Express, 2013, 6(11): 117301.

[21] Lei Y, Du Y, Li J, et al. Fabrication of X-ray absorption gratings via micro-casting for grating-based phase contrast imaging[J]. Journal of Micromechanics and Microengineering, 2014, 24(1): 015007.

[22] Revol V, Kottler C, Kaufmann R, et al. Noise analysis of grating-based X-ray differential phase contrast imaging[J]. Review of Scientific Instruments, 2010, 81(7): 073709.

[23] Modregger P, Pinzer B R, Thüring T , et al. Sensitivity of X-ray grating interferometry[J]. Optics Express, 2011, 19(19): 18324-18338.

[24] 黄建衡, 杜 杨, 雷耀虎, 等. 硬X射线微分相衬成像的噪声特性分析[J]. 物理学报, 2014, 63(16): 168702.

    Huang Jianheng, Du Yang, Lei Yaohu, et al. Noise analysis of hard X-ray differential phase contrast imaging[J]. Acta Physica Sinica, 2014, 63(16): 168702.

[25] Boone J M, Seibert J A. An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV[J]. Medical Physics, 1997, 24(11): 1661-1670.

黄建衡, 雷耀虎, 杜杨, 刘鑫, 郭金川, 李冀, 郭宝平. 铋光栅X射线相衬成像条纹对比度的定量计算[J]. 光学学报, 2017, 37(4): 0434001. Huang Jianheng, Lei Yaohu, Du Yang, Liu Xin, Guo Jinchuan, Li Ji, Guo Baoping. Quantitative Calculation of Fringe Visibility in Bismuth Grating-Based X-Ray Phase-Contrast Imaging[J]. Acta Optica Sinica, 2017, 37(4): 0434001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!