强激光与粒子束, 2017, 29 (6): 060101, 网络出版: 2017-06-21  

21 km, 5 Gbps, 0.14 THz无线通信系统设计与试验

Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system
作者单位
1 中国工程物理研究院 电子工程研究所, 四川 绵阳621900
2 中国工程物理研究院 微系统与太赫兹研究中心, 成都 610200
3 中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
摘要
设计了工作在太赫兹频段的无线通信系统, 基带部分采用16QAM调制体制, 射频部分采用混频器实现两级上下变频, 功放部分采用“固态功率放大+电真空器件放大”级联的功率放大技术, 实现了0.14 THz频段W量级的功率输出。接收端采用全固态常温接收技术, 接收机等效噪声温度为1100 K, 接收灵敏度达到-57 dBm。采用两个增益50 dBi的卡塞格伦天线, 在成都市双流区与新津县之间开展了距离21 km的无线通信试验, 单路实时通信速率达到5 Gbps, 误码率低于10-6。并成功同时实时传输了两路符合HD-SDI标准的无压缩高清视频数据流, 每一路的标准有效速率达到1.485 Gbps。
Abstract
A terahertz wireless communication system is designed. The 16QAM modulation scheme is used in baseband processing, and mixers are used for cascading frequency up and down-converting. Cascading power amplification technique is adopted with a solid-state power amplifier and a vacuum electronic device. Several watts power is emitted at 0.14 THz. An all solid-state receiver running in room temperature is used, whose equivalent noise temperature is 1100 K and receiving sensitivity is -57 dBm. A 21 km wireless communication testing is carried out between the Shuangliu district and the Xinjin county of Chengdu, by means of two Cassegrain antennas with 50 dBi gain each. A 5 Gbps single-channel transmission speed is measured with bit error rate below 10-6. For testing, two standard HD-SDI uncompressed video streams are successfully transmitted in real time simultaneously, with an effective speed of 1.485 Gbps for each one.
参考文献

[1] Suen J, Fang M, Denny S, et al. Modeling of terabit geostationary terahertz satellite links from globally dry locations[J]. IEEE Trans Terahertz Science and Technology, 2015, 5(2): 299-313.

[2] Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12): 977-981.

[3] Antes J, Boes F, Messinger T, et al. Multi-gigabit millimeter-wave wireless communication in realistic transmission environments[J]. IEEE Trans Terahertz Science and Technology, 2015, 5(6): 1078-1087.

[4] Hirata A, Kosugi T, Takahashi H, et al. 5.8-km 10-Gbps data transmission over a 120-GHz-band wireless link[C]//IEEE International Conference on Wireless Information Technology and Systems. 2010.

[5] New world record in wireless data transmission[EB/OL]. http: //www.kit.edu/downloads/pi/KIT_PI_2013_062_New_World_Record_in_Wireless_Data_Transmission.pdf.

[6] Kallfass I, Boes F, Messinger T, et al. 64 Gbit/s Transmission over 850 m fixed wireless link at 240 GHz carrier frequency[J]. Journal of Infrared, Millimeter, and Terahertz Wave, 2015, 36(2): 221-233.

[7] Wang C, Lin C, Chen Q, et al. 0.14 THz high speed data communication over 1.5 kilometers[C]//37th International Conference on Infrared, Millimeter, and Terahertz Waves. 2012.

[8] Wang C, Lin C, Chen Q, et al. A 10-Gbit/s wireless communication link using 16-QAM modulation in 140-GHz band[J]. IEEE Trans Microwave Theory and Techniques, 2013, 61(7): 2737-2746.

[9] Lei W, Jiang Y, Hu L, et al. Design and experiment research for 0.14 THz folded waveguide traveling wave tubes[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(3): 334-338.

[10] Hu L, Lei W, Jiang Y, et al. Design and test of electron-optical system for 0.14THz folded-waveguide traveling-wave tube[C]//IEEE International Vacuum Electronics Conference. 2015.

[11] Lei W, Jiang Y, Zhou Q, et al. Development of D-band continuous-wave folded waveguide traveling-wave tube[C]//IEEE International Vacuum Electronics Conference. 2015.

[12] 蒋艺, 雷文强, 胡林林, 等. 0.14 THz行波管的设计与实验研究[J]. 强激光与粒子束, 2014, 26: 123101.(Jiang Yi, Lei Wenqiang, Hu Linlin, et al. Design and experiments of 0.14 THz traveling-wave tubes[J]. High Power Laser and Particle Beams, 2014, 26: 123101)

[13] 林长星. 2Gbps高速通信解调技术及其实现研究[D]. 北京: 清华大学, 2012: 20-23. (Lin Changxing, Research on demodulation technique and its implementation for 2Gbps high speed communication. Beijing: Tsinghua University, 2012: 20-23)

[14] Lin C, Zhang J, Shao B, et al. A multi-gigabit parallel demodulator and its FPGA implementation[J]. IEICE Trans Fundamentals of Electronics, Communications and Computer Sciences, 2012, 95-A(8): 1412-1415.

[15] Wang C, Deng X, Miao L, et al. 110-170 GHz sub-harmonic mixer based on Schottky barrier diodes[C]//International Conference on Microwave and Millimeter Wave Technology. 2012.

吴秋宇, 林长星, 陆彬, 缪丽, 邓贤进, 周浏阳, 陈洪斌, 蒋艺, 姚军, 张健. 21 km, 5 Gbps, 0.14 THz无线通信系统设计与试验[J]. 强激光与粒子束, 2017, 29(6): 060101. Wu Qiuyu, Lin Changxing, Lu Bin, Miao Li, Deng Xianjin, Zhou Liuyang, Chen Hongbin, Jiang Yi, Yao Jun, Zhang Jian. Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system[J]. High Power Laser and Particle Beams, 2017, 29(6): 060101.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!