光学学报, 2016, 36 (11): 1124001, 网络出版: 2016-11-08   

泡沫镍孔尺度辐射传递加速模拟研究

Simulation Study on Accelerated Pore-Scale Radiative Transfer of Ni Foam
作者单位
哈尔滨工业大学能源科学与工程学院, 黑龙江 哈尔滨 150001
摘要
利用计算机断层扫描技术获取了泡沫镍的重建结构,将蒙特卡罗法与八叉树算法结合进行泡沫镍孔尺度辐射传递建模,分析了八叉树算法对辐射传递计算的加速作用。结果表明,采用八叉树算法的辐射特性计算值与未采用时相比,最大相对误差小于1‰。在最优空间深度范围内,空间深度越大和模型面元越多,计算的加速效果越明显。
Abstract
The computed tomography technique is employed to reconstruct the structure of Ni foam, and the Monte Carlo method in combination with the octree algorithm to model the pore-scale radiative transfer of Ni foam. The accelerating effect of the octree algorithm on the radiative transfer is analyzed. The results indicate that the maximum relative error of the calculation value of radiative property between with and without the octree algorithm is less than 1‰. Within the range of optimal spatial depth, the larger the spatial depth and the more the model element is, the more obvious the accelerating effect in computation is.
参考文献

[1] Wang F Q, Tan J Y, Yong S, et al. Thermal performance analyses of porous media solar receiver with different irradiative transfer models[J]. International Journal of Heat and Mass Transfer, 2014, 78: 7-16.

[2] Shokouhmand H, Jam F A, Salimpour M R. The effect of porous insert position on the enhanced heat transfer in partially filled channels[J]. International Communications in Heat and Mass Transfer, 2011, 38(8): 1162-1167.

[3] Bedarev I A, Mironov S G, Serdyuk K M, et al. Physical and mathematical modeling of a supersonic flow around a cylinder with a porous insert[J]. Journal of Applied Mechanics and Technical Physics, 2011, 52(1): 9-17.

[4] Randrianalisoa J, Baillis D. Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches[J]. Comptes Rendus Physique, 2014, 15(8): 683-695.

[5] Coquard R, Rochais D, Baillis D. Modeling of the coupled conductive and radiative heat transfer in NiCrAl from photothermal measurements and X-ray tomography[J]. Special Topics & Reviews in Porous Media, 2011, 2(4): 249-265.

[6] Coquard R, Baillis D, Randrianalisoa J. Homogeneous phase and multi-phase approaches for modeling radiative transfer in foams[J]. International Journal of Thermal Sciences, 2011, 50(9): 1648-1663.

[7] Coquard R, Rousseau B, Echegut P, et al. Investigations of the radiative properties of Al-NiP foams using tomographic images and stereoscopic micrographs[J]. International Journal of Heat and Mass Transfer, 2012, 55(5): 1606-1619.

[8] Cunsolo S, Oliviero M, Harris W M, et al. Monte Carlo determination of radiative properties of metal foams: Comparison between idealized and real cell structures[J]. International Journal of Thermal Sciences, 2015, 87: 94-102.

[9] Zeghondy B, Iacona E, Taine J. Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI)[J]. International Journal of Heat and Mass Transfer, 2006, 49(17): 2810-2819.

[10] 谭海, 王大东, 薛艳玲, 等. 显微CT血管系统三维结构的骨架细化算法并行化设计实现[J]. 光学学报, 2015, 35(11): 1117003.

    Tan Hai, Wang Dadong, Xue Yanling, et al. Parallelization of 3D thinning algorithm for extracting skeleton of micro-CT vasculature[J]. Acta Optica Sinica, 2015, 35(11): 1117003.

[11] 毛灵涛, Chiang Fu-pen, 袁则循. 基于CT的数字体散斑法测量物体内部三维变形场[J]. 光学学报, 2015, 35(3): 0312001.

    Mao Lingtao, Chiang Fu-pen, Yuan Zexun. Three-dimensional displacement measurement in solid using digital volumetric speckle photography based on computer tomography[J]. Acta Optica Sinica, 2015, 35(3): 0312001.

[12] 马宏财, 金光, 钟兴, 等. 基于蒙特卡罗法的太阳能聚光接收器布局及形状优化设计[J]. 光学学报, 2013, 33(3): 0308001.

    Ma Hongcai, Jin Guang, Zhong Xing, et al. Arrangement and shape optimization of solar concentrating receivers using Monte Carlo method[J]. Acta Optica Sinica, 2013, 33(3): 0308001.

[13] 陈学, 孙创, 夏新林. 基于微面斜率法的粗糙表面半透明介质层光谱散射特性分析[J]. 光学学报, 2012, 32(12): 1229001.

    Chen Xue, Sun Chuang, Xia Xinlin. Spectral scattering properties analysis of semitransparent medium layer with rough surface by microfacet slope method[J]. Acta Optica Sinica, 2012, 32(12): 1229001.

[14] 谈和平, 夏新林, 刘林华, 等. 红外辐射特性与传输的数值计算[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 157-163.

    Tan Heping, Xia Xinlin, Liu Linhua, et al. Numerical calculation of infrared radiative transfer[M]. Harbin: Harbin Institute of Technology Press, 2006: 157-163.

[15] Saftly W, Camps P, Baes M, et al. Using hierarchical octrees in Monte Carlo radiative transfer simulations[J]. Astronomy & Astrophysics, 2013, 554: A10.

[16] Gosálvez M A, Xing Y, Sato K, et al. Octree-search kinetic Monte Carlo[J]. Sensors and Actuators A: Physical, 2010, 159(1): 64-68.

李洋, 夏新林, 陈学, 刘博, 谈和平. 泡沫镍孔尺度辐射传递加速模拟研究[J]. 光学学报, 2016, 36(11): 1124001. Li Yang, Xia Xinlin, Chen Xue, Liu Bo, Tan Heping. Simulation Study on Accelerated Pore-Scale Radiative Transfer of Ni Foam[J]. Acta Optica Sinica, 2016, 36(11): 1124001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!