光学学报, 2009, 29 (5): 1374, 网络出版: 2009-05-22   

聚合物光子晶体波导中慢光传输的电光动态调制 下载: 572次

Tunable Slow Light by Electro-Eptic Effect in Polymer Photonic Crystal Waveguide
作者单位
北京邮电大学光通信与光波技术教育部重点实验室, 北京 100876
摘要
全光缓存器是未来全光网络中不可或缺的关键器件。针对可控光延迟和光存储的应用需求, 研究了光子晶体波导中慢光传输的外部动态调制。设计了一种新型的聚合物光子晶体波导结构。用平面波展开法仿真得到该波导结构带隙中存在单一的TE导模, 导模带边处的群速度可达10-2c。由于基底聚合物材料具有高电光系数和瞬态的电光响应时间, 且导模慢光传输产生的电磁场局域对电光效应有增强作用, 可在低调制电压的条件下实现对慢光导模的大范围动态调制。数值分析得到在外加调制电压为80 V时导模带边波长的移动幅度达80.8 nm。慢光导模的移动随调制电压的变化基本呈线性关系, 且调制的灵敏度约为1 nm/V。这种线性的外部动态调制基本可满足全光网络对慢光光缓存的需求。
Abstract
All-optical buffers have been considered as essential components for all-optical communications. Considering the requirements of controllable optical delay lines and optical buffers, the external dynamic tuning of slow light in photonic crystal waveguides has been studied. A novel photonic crystal waveguide on polymer substrate is proposed. Numerical study using plane, wave expansion method shows that this structure supports a single guided mode transmission,which allows a low group velocity of 10-2c in the vicinity of band edge. Since the substrate material possesses a high electro-optic coefficient and a subpicosecond nonlinear response time, and local field effect induced the by slow light transmission can enhance electro-optic effect greatly, these properties offer the opporunity to tune the slow light mode in wide frequency range with low power. Numerical analysis shows that by applying an external voltage of 80 V, the guided mode will shift 80.8 nm, and moreover the wavelength shift is nearly linearly increased with the increas of applied modulated voltage. Modulation sensitivity is about 1 nm/V. The flexible dynamical tuning of slow light mode can meet the requirements for the use of optical buffer in all-optical network in principle.
参考文献

[1] . F. Krauss. Slow light in photonic crystal waveguides[J]. J. Phys. D: Appl. Phys., 2007, 40: 2666-2670.

[2] Toshihiko Baba, Daisuke Mori. Potential of slowlight in photonic crystal[C].SPIE, 6351: 63511Z-1~63511Z-9

[3] D. J. Gauthier, A. L. Gaeta, R. W. Boyd. Slow light: from basics to future prospects[J]. Photonics Spectra, March, 2006: 44~50

[4] . A. Vlasov, M. O’Boyle, H F. Hamann et al.. Active control of slow light on a chip with photonic crystal waveguides[J]. Nature, 2005, 438(7064): 65-69.

[5] Alex Figotin, Ilya Vitebskiy. Slow light in photonic crystals[J]. Waves in Random and Complex Media, 2006, 6(3)293~382

[6] 梁卿昌, 王海华, 蒋占魁. Eu3+ ∶Y2SiO5晶体中电磁感应透明及群速度减慢研究[J].光学学报, 2007,27(5): 946~950

    Liang Qingchang, Wang Haihua, J iang Zhankui. Investigation on electromagnetically induced transparency and slowing-down of group velocity in Eu3+ ∶Y2SiO5 Crystal[J]. Acta Optica Sinica, 2007, 27(5): 946~950

[7] M. Svaluto Moreolo, V. Morra, G. Cincotti. Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides[J]. J. Opt. A: Pure Appl. Opt. 2008, 10, 064002-1~064002-6

[8] . D. Settle, R. J. P. Engelen, M. Salib et al.. Flatband slow light in photonic crystals featuring spatial pulse compression and Terahertz bandwidth[J]. Opt. Express, 2007, 15(1): 219-226.

[9] . Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Opt. Express, 2005, 13(23): 9398-9408.

[10] . T. Tinker, J-B. Lee. Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency[J]. Opt. Exp., 2005, 13(8): 7174-7188.

[11] . Camargo, Harold M. H. Chong, Richard M. De La Rue. 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure[J]. Opt. Exp., 2004, 12(4): 588-592.

[12] . Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal[J]. J. Opt. Soc. Am. B, 2007, 24(6): 1416-1422.

[13] 李大汕, 刘立人, 刘德安 等. 强外加电场与大调制度下光折变动力学光栅形成研究[J].光学学报, 2007, 27(1): 148~154

    Li Dashan, Liu Liren, Liu Dean et al.. Photorefractive Grating Dynamics under Large Modulation and Strong Applied Electric Field[J], Acta Optica Sinica, 2007, 27(1): 148~154

[14] Jan Michael Brosi, Christian Koos, Lucio Claudio Andreani et al.. High-speed low-voltage electro-optic modulator with a polymer infiltrated silicon photonic crystal waveguide[J]. Opt. Exp., 2008, 16N(o. 6): 4177~4191

[15] . Soljac^ic′, J. D. Joannopoulos. Enhancement of nonlinear effects using photonic crystals[J]. Nature Material, 2004, 13: 211-218.

[16] . Soljac^ic′,S. G. Johnson, S. Fan, E. Ippen et al.. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity[J]. J. Opt. Soc. Am. B., 2002, 19(9): 2052-2059.

[17] Choon-Gi Choi, Chul-Sik Kee, Helmut Schift. Fabrication of polymer photonic crystal slabs using nanoimprint lithography[J]. Current Appl. Phys., 2006, 6(S1): e8~e11

[18] 全宇军, 韩培德, 陆晓东 等. 一种计算和分析二维光子晶体缺陷模式的方法[J].光学学报, 2006, 26(12): 1841~1846

    Quan Yujun, Han Peide, Lu Xiaodong et al.. A Numerical Method to Calculate and Analyze of Defect Modes in Two-Dimensional Photonic Crystal[J] . Acta Optica Sinica, 2006,26(12): 1841~1846

[19] . Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals[J]. Appl. Phys. Lett., 2005, 86: 231106-1.

[20] . . χ(2) semiconductor photonic crystals[J]. J. Opt. Soc. Am. B, 2002, 19: 2094-2101.

王雪莹, 田慧平, 李长红, 纪越峰. 聚合物光子晶体波导中慢光传输的电光动态调制[J]. 光学学报, 2009, 29(5): 1374. Wang Xueying, Tian Huiping, Li Changhong, Ji Yuefeng. Tunable Slow Light by Electro-Eptic Effect in Polymer Photonic Crystal Waveguide[J]. Acta Optica Sinica, 2009, 29(5): 1374.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!