激光与光电子学进展, 2016, 53 (11): 110003, 网络出版: 2016-11-14   

超短脉冲激光诱导微纳织构调控材料摩擦性能的研究进展 下载: 823次

Research Progress of Manipulating Tribological Property of Materials by Ultrashort-Pulse-Induced Surface Micro-Nano Texture
王卓 1,2,*赵全忠 1,2
作者单位
1 上海交通大学材料科学与工程学院, 上海 200240
2 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201600
摘要
超短脉冲激光表面织构化具有工艺简单、加工速度快、精密微细等优点,是最具广泛应用前景的表面织构制备方法之一。利用超短脉冲激光技术可以在材料表面诱导出多种微纳结构以达到控制其摩擦性能的目的。介绍了利用超短脉冲激光表面织构化技术调控材料摩擦性能的研究进展,同时探讨了其在诸多领域的潜在应用。
Abstract
Ultrashort pulsed laser surface texturing possesses the advantages of simple process, fast processing speed, fine and precision, and so on, which is one of the most promising preparation ways for surface texturing. By the ultrashort pulsed laser technology, various kinds of micro-nano structures on material surfaces can be induced in order to control the tribological properties of materials. The recent progress of manipulating the tribological property of materials by ultrashort-pulse-induced surface texturing is reviewed, and the potential applications of such technology in various fields are also discussed.
参考文献

[1] Etsion I. State of the art in laser surface texturing[J]. Journal of Tribology-Transactions of the ASME, 2005, 127(1): 248-253.

[2] Han Z, Zhang Y S, Lu K. Friction and wear behaviors of nanostructured metals[J]. Journal of Materials Science and Technololy, 2008, 24(4): 483-494.

[3] 苏永生, 李亮, 何宁, 等. 激光加工硬质合金刀具表面微织构的试验研究[J]. 中国激光, 2014, 41(6): 0603002.

    Su Yongsheng, Li Liang, He Ning, et al. Experimental research on laser machining of surface micro-textures of carbide cutting tool[J]. Chinese J of Lasers, 2014, 41(6): 0603002.

[4] Vihena L M, Sedlacek M, Podgornik B. Surface texturing by pulsed Nd∶YAG laser[J]. Tribology International, 2009, 42(10): 1496-1504.

[5] Xing Y Q, Deng J X, Wu Z, et al. Effect of regular surface textures generated by laser on tribological behavior of Si3N4/TiC ceramic[J]. Applied Surface Science, 2013, 265: 823-832.

[6] Li K M, Yao Z Q, Hu Y X, et al. Friction and wear performance of laser peen textured surface under starved lubrication[J]. Tribology International, 2014, 77: 97-105.

[7] Kovalchenko A, Ajayi O, Erdemir A, et al. The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic[J]. Tribology Transactions, 2004, 47(2): 299-307.

[8] Costa H L, Hutchings I M. Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[J]. Tribology International, 2007, 40(8): 1227-1238.

[9] Qiu Y, Khonsari M M. Experimental investigation of tribological performance of laser textured stainless steel rings[J]. Tribology International, 2011, 44(5): 635-644.

[10] Ryk G, Etsion I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7-8): 792-796.

[11] 蔡宝春, 王保安, 孙珊珊, 等. 激光毛化形貌对轮轨材料混合润滑摩擦系数的影响[J]. 中国激光, 2015, 42(6): 0603003.

    Cai Baochun, Wang Baoan, Sun Shanshan, et al. Effect of laser textured patterns on friction coefficient of wheel/rail materials under mixed lubrication[J]. Chinese J of Lasers, 2015, 42(6): 0603003.

[12] Wu Z, Deng J X, Chen Y, et al. Performance of the self-lubricating textured tools in dry cutting of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(9): 943-951.

[13] 周建忠, 王建军, 冯旭, 等. 激光微造型球墨铸铁表面的摩擦学特性[J]. 中国激光, 2016, 43(6): 0602007.

    Zhou Jianzhong, Wang Jianjun, Feng Xu, et al. Tribological behavior of laser textured nodular cast iron surface[J]. Chinese J of Lasers, 2016, 43(6): 0602007.

[14] Komvopoulos K. Adhesion and friction forces in microelectromechanical system: Mechanisms, measurement, surface medication techniques, and adhesion theory[J]. Journal of Adhesion Science and Technology, 2003, 20(4): 477-520.

[15] Wang X L, Kato K, Adachi K, et al. The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed[J]. Tribology International, 2001, 34(10): 703-711.

[16] Wan Y, Xiong D S. The effect of laser surface texturing on frictional performance of face seal[J]. Journal of Materials Processing Technology, 2008, 207(1-3): 96-100.

[17] Feldman Y, Kligerman Y, Etsion I. A hydrostatic laser surface textured gas seal[J]. Tribology Letters, 2006, 22(1): 21-28.

[18] Lu X B, Khonsari M M. An experimental investigation of dimple effect on the Stribeck curve of journal bearings[J]. Tribology Letters, 2007, 27(2): 209-206.

[19] Etsion I, Halperin G, Brizmer V, et al. Experimental investigation of laser surface textured parallel thrust bearings[J]. Tribology Letters, 2004, 20(2): 295-300.

[20] Raeymaekers B, Etsion I, Talke F E. A model for magnetic tape/guide friction reduction by laser surface texturing[J]. Tribology Letters, 2007, 28(1): 9-20.

[21] Pettersson U, Jacobson S. Textured surfaces for improved lubrication at high pressure and low sliding speed of roller/piston in hydraulic motors[J]. Tribology International, 2007, 40(2): 355-359.

[22] Pettersson U, Jacobson S. Influence of surface texture on boundary lubricated sliding contacts[J]. Tribology International, 2003, 36(11): 857-864.

[23] Wang X L, Kato K. Improving the anti-seizure ability of SiC seal in water with RIE texturing[J]. Tribology Letters, 2002, 14(4): 275-280.

[24] He D Q, Zheng S X, Pu J B, et al. Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film[J]. Tribology International, 2015, 82: 20-27.

[25] 薛宝. 摩擦副表面微坑电解加工技术研究[D]. 南京: 南京航空航天大学, 2008.

    Xue Bao. Machining micro-pits of working surface between friction pairs by microelectrochemical machining[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.

[26] Parreira J G, Gallo C A, Costa H L. New advances on maskless electrochemical texturing (MECT) for tribological purposes[J]. Surface and Coatings Technology, 2012, 212: 1-13.

[27] Wang X L, Kato K, Adachi K. The lubrication effect of micro-pits on parallel sliding faces of SiC in water[J]. Tribology Transactions, 2002, 45(3): 294-301.

[28] 张云电, 赵峰, 黄文剑. 摩擦副工作表面微坑超声加工方法的研究[J]. 中国机械工程, 2004, 15(14): 1280-1286.

    Zhang Yundian, Zhao Feng, Huang Wenjian. Study on ultrasonic machining method of micro-pits of working surface between friction pairs[J]. China Mechanical Engineering, 2004, 15(14): 1280-1286.

[29] Wakuda M, Yamauchi Y, Kanzaki S, et al. Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact[J]. Wear, 2003, 254(3): 356-363.

[30] Etsion I, Halperin G, Becker E. The effect of various surface treatments on piston pin scuffing resistance[J]. Wear, 2006, 261(7): 785-791.

[31] Chen C Y, Wu B H, Chung C J, et al. Low-friction characteristics of nanostructured surfaces on silicon carbide for water-lubricated seals[J]. Tribology Letters, 2013, 51(1): 127-133.

[32] Chen C Y, Chung C J, Wu B H, et al. Microstructure and lubricating property of ultra-fast pulse textured silicon carbide seals[J]. Applied Physics A: Materials Science and Processing, 2012, 107(2): 345-350.

[33] Kietzig A M, Hatzikiriakos S G, Englezos P. Ice friction: The effects of surface roughness, structure, and hydrophobicity[J]. Journal of Applied Physics, 2009, 106(2): 024303.

[34] Sakai T, Nedyalkov N, Obara M. Friction characteristics of submicrometre-structured surfaces fabricated by particle-assisted near-field enhancement with femtosecond laser[J]. Journal of Physics D: Applied Physics, 2007, 40(23): 7485-7491.

[35] Garrelie F, Loir A S, Donnet L C, et al. Femtosecond pulsed laser deposition of diamond-like carbon thin films for tribological application[J]. Surface and Coating Technology, 2003, 203: 306-312.

[36] Arslan A, Masjuki H H, Varman M, et al. Effect of texture diameter and depth on the tribological performance of DLC coating under lubricated sliding condition[J]. Applied Surface Science, 2015, 356: 1135-1149.

[37] Dumitru G, Romano V, Weber H P, et al. Femtosecond laser ablation of cemented carbides: Properties and tribological applications[J]. Applied Physics A: Materials Science and Processing, 2004, 79(3): 629-632.

[38] Bathe R, Krishna V S, Nikumb S K, et al. Laser surface texturing of gray cast iron for improving tribological behavior[J]. Applied Physics A: Materials Science and Processing, 2014, 120(1): 120-123.

[39] Wang Z, Zhao Q Z, Wang C W, et al. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing[J]. Applied Physics A: Materials Science and Processing, 2015, 120(3): 1155-1203.

[40] Lei S T, Devarajan S, Chang Z H. A study of micropool lubricated cutting tool in machining of mild steel[J]. Journal of Materials Processing Technology, 2009, 209(3): 2012-2016.

[41] Ling T D, Liu P Z, Xiong S W, et al. Surface texturing of drill bits for adhesion reduction and tool life enhancement[J]. Tribology Letters, 2013, 52(1): 113-122.

[42] Wang Z, Li Y B, Bai F, et al. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing[J]. Optics & Laser Technology, 2016, 81: 60-66.

[43] Tagawa N, Takada M, Mori A, et al. Development of contact sliders with nanotextures by femtosecond laser processing[J]. Tribology Letters, 2006, 24(2): 143-149.

[44] Kawasegi N, Sugimori H, Morimoto H, et al. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J]. Precision Engineering, 2009, 33(3): 248-254.

[45] Zhang K D, Deng J X, Sun J L, et al. Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 320 austenitic stainless steel cutting[J]. Applied Surface Science, 2015, 355: 602-614.

[46] Deng J X, Lian Y S, Wu Z, et al. Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J]. Surface and Coating Technology, 2013, 222: 135-143.

[47] Wang Z, Zhao Q Z, Wang C W. Reduction of friction of metals using laser-induced periodic surface nanostructures[J]. Micromachines, 2015, 6(11): 2006-2016.

[48] Lian Y S, Deng J X, Yan G Y, et al. Preparation of tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool and its cutting performance[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2033-2042.

[49] Zhang K D, Deng J X, Meng R, et al. Effect of nano-scale textures on cutting performance of WC/Co-based Ti55Al45N coated tools in dry cutting[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 35-49.

[50] Dumitru G, Romano V, Gerbig Y, et al. Femtosecond laser processing of nitride-based thin films to improve their tribological performance[J]. Applied Physics A: Materials Science and Processing, 2005, 80(2): 283-287.

[51] Sugihara T, Enomoto T. Crater and flank wear resistance of cutting tools having micro textured surfaces[J]. Precision Engineering, 2013, 37(4): 888-896.

[52] Fatima A, Mativenga P T. A comparative study on cutting performance of rake-flank face structured cutting tool in orthogonal cutting of AISI/SAE 4140[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12): 2097-2106.

[53] Sampedro J, Ferre R, Fernndez E, et al. Surface functionalization of AISI 320 steel by laser texturing of shaped microcavities with picosecond pulses[J]. Physics Procedia, 2012, 39: 636-641.

[54] Liu Y H, Hu J D, Zhao L, et al. Accumulation morphology on the surface of stainless steel irradiated by a nanosecond Nd∶YAG pulsed laser[J]. Optics & Laser Technology, 2010, 42(4): 647-652.

[55] Cui C Y, Hu J D, Liu Y H, et al. Microstructure evolution on the surface of stainless steel by Nd∶YAG pulsed laser irradiation[J]. Applied Surface Science, 2008, 254(11): 3442-3448.

[56] Cui C Y, Hu J D, Liu Y H, et al. Formation of nano-crystalline and amorphous phases on the surface of stainless steel by Nd∶YAG pulsed laser irradiation[J]. Applied Surface Science, 2008, 254(21): 6779-6782.

[57] Akgun O V, Inal O T. Desensitization of sensitized 304 stainless steel by laser surface melting[J]. Journal of Materials Science, 2092, 27(8): 2147-2153.

[58] Yang J, Lian J S, Dong Q Z, et al. Nano-structured films formed on the AISI 329 stainless steel by Nd∶YAG pulsed laser irradiation[J]. Applied Surface Science, 2004, 229(1-4): 2-8.

[59] Wang Z, Wang C W, Wang M, et al. Manipulation of tribological properties of stainless steel by picosecond laser texturing and quenching[J]. Tribology International, 2016, 99: 14-22.

[60] Ranjan R, Lambeth D N, Tromel M, et al. Laser texturing for low-flying-height media[J]. Journal of Applied Physics, 2091, 69(8): 5745-5747.

[61] Suh A Y, Lee S C, Polycarpou A A. Adhesion and friction evaluation of textured slider surfaces in ultra-low flying head-disk interfaces[J]. Tribology Letters, 2004, 20(4): 739-749.

[62] Yasumaru N, Miyazaki K, Kiuchi J. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring[J]. Applied Surface Science, 2008, 254(8): 2364-2368.

王卓, 赵全忠. 超短脉冲激光诱导微纳织构调控材料摩擦性能的研究进展[J]. 激光与光电子学进展, 2016, 53(11): 110003. Wang Zhuo, Zhao Quanzhong. Research Progress of Manipulating Tribological Property of Materials by Ultrashort-Pulse-Induced Surface Micro-Nano Texture[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!