液晶与显示, 2016, 31 (12): 1149, 网络出版: 2016-12-30  

基于无人机的输电网故障跳线联板识别

Recognition algorithm for fault jumper connection plate of transmission network based on UAV
作者单位
1 北京理工大学 光电学院 光电成像系统与技术教育部重点实验室, 北京 100081
2 天津航天中为数据系统科技有限公司 天津市智能遥感信息处理技术企业重点实验室, 天津 300301
3 南方电网科学研究院有限责任公司, 广东 广州 510080
摘要
跳线联板是输电网中重要设备, 其是否存在故障对输电网正常运行具有很大的影响。但由于现有的算法是对输电网中所有的故障用统一的方法进行识别, 没有对各类故障输电设备进行专门的研究, 导致故障跳线联板识别率低。为了高效识别红外视频图像中故障跳线联板, 首先针对输电线的红外图像特征, 采用改进的OTSU阈值分割图像对红外图像进行分割; 其次, 采用漫水法滤波分离各个连通域, 运用形态学滤去小区域, 填充大区域内的孔洞; 最后, 提取连通域的骨架, 并从骨架图像中提取出USFPF特征, 通过该特征识别的故障跳线联板。实验结果表明, 识别故障跳线联板准确率为85.71%, 漏检率为14.28%, 误识别率为2.8%。该方法能够较好地识别故障跳线联板,具有较好的鲁棒性。
Abstract
Jumper connecting plate is an important part of electricity supply network. Jumper connecting plate’s status has a significant impact on electricity supply network’s proper operation. However, all the existing algorithms identify the fault of electricity supply network with a unified approach, so we have no specific approach on various types of transmission equipment failure and it will result in low recognition rate of jumper connecting plate. In order to recognize the fault jumper connecting plate efficiently, we use improved OTSU method for infrared image segmentation and use flood fill method to separate each segmentation area. Secondly, we delete small areas and fill holes through dilation and hole filling algorithm, then get connected area’s skeleton by the skeleton extraction algorithm. Thirdly, we find Harris corner point in skeleton image, and calculate USFPF feature. Finally, through the slope value recognition we can discern jumper connecting plate’s fault. As a result, the successful recognition rate for jumper connecting plate’s fault is 85.71%, the miss rate is 14.28%, and the mistake rate is 2.8%. Experimental results show that the method has good results.
参考文献

[1] LESLIE J R, WAIT J R. Detection of overheated transmission line joints by means of a bolometer [J]. Transactions of the American Institute of Electrical Engineers, 1949, 68(1): 64-69.

[2] 郭贤珊, 李炜, 蔡汉生.高压输电线路红外检测初探[J].高电压技术, 1999, 25(2): 32-34.

    GUO X S, LI W, CAI H S. Primary investigation on infrared diagnosis of HV transmission lines [J]. High Voltage Engineering, 1999, 25(2): 32-34. (in Chinese)

[3] AKSYONOV Y P, GOLUBEV A, MUCHORTOV A,et al. On-line a off-line diagnostics for power station HV equipment [C]//Proceedings of Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference. Cincinnati, OH: IEEE, 1999: 637-643.

[4] 陈晓兵, 马玉林, 徐祖舰.无人飞机输电线路巡线技术探讨[J].南方电网技术, 2008, 2(6): 56-61.

    CHEN X B, MA Y L, XU Z J. Research on transmission-lines-cruising technology with the unmanned aerial vehicle [J]. Southern Power System Technology, 2008, 2(6): 56-61. (in Chinese)

[5] 彭晔.基于红外热图像的架空输电线路故障检测软件开发[D].南京: 南京理工大学, 2011.

    PENG Y.Based on infrared images of overhead transmission line fault detection software [D]. Nanjing: Nanjing University of Science and Technology, 2011. (in Chinese)

[6] 张文峰, 彭向阳, 陈锐民, 等.基于无人机红外视频的输电线路发热缺陷智能诊断技术[J].电网技术, 2014, 38(5): 1334-1338.

    ZHANG W F, PENG X Y, CHEN R M,et al. Intelligent diagnostic techniques of abnormal heat defect in transmission lines based on unmanned helicopter infrared video [J]. Power System Technology, 2014, 38(5): 1334-1338. (in Chinese)

[7] 刘健, 解辰, 蔺丽华.基于红外图像的电力变压器油位自动检测方法[J].高电压技术, 2010, 36(4): 964-970.

    LIU J, XIE C, LIN L H. Automatic detection of oil level of electric power transformers using infrared image [J]. High Voltage Engineering, 2010, 36(4): 964-970. (in Chinese)

[8] 杨殿成, 邱朝阳.红外检测技术原理及运用[J].新疆电力, 2004(3): 28-31.

    YANG D C, QIU C Y. Principle and application of infrared detection technology [J]. Xinjiang Electric Power Technology, 2004(3): 28-31. (in Chinese)

[9] PLANCK M.The Theory of Heat Radiation[M]. MASIUS M, Trans. 2nd ed. P. Blakiston's Son & Co., 1914.

[10] 罗昳昀.高压输电线路设备红外诊断与检测技术分析[J].电子测试, 2013(24): 115-116.

    LUO Y J. Analysis of high voltage transmission line equipment of infrared diagnosis and detection technology [J]. Electronic Test, 2013(24): 115-116.

[11] 陈西广, 董罡, 王滨海, 等.固定翼无人机巡检输电线路探讨[J].山东电力技术, 2011(5): 1-5, 8.

    CHEN X G, DONG G, WANG H B,et al. Discussion on transmission line inspection with unmanned fixed-wings aircraft [J]. Shandong Dianli Jishu, 2011(5): 1-5, 8.

[12] 陈冬岚, 刘京南, 余玲玲.几种图像分割阈值选取方法的比较与研究[J].机械制造与自动化, 2003(1): 77-80.

    CHEN D L, LIU J N, YU L L. Comparison of image segmentation thresholding method [J]. Machine Building & Automation, 2003(1): 77-80. (in Chinese)

[13] OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.

[14] 张正峰, 马少飞, 李玮.新的种子点区域填充算法[J].计算机工程与应用, 2009, 45(6): 201-202, 206.

    ZHANG Z F, MA S F, LI W. New regional filling algorithm based on seed [J]. Computer Engineering and Applications, 2009, 45(6): 201-202, 206.

[15] 巨志勇, 陈优广.一种新的基于链码的填充算法[J].计算机工程, 2007, 33(17): 211-212, 215.

    JU Z Y, CHEN Y G. New filling algorithm based on chain code [J]. Computer Engineering, 2007, 33(17): 211-212, 215. (in Chinese)

[16] 廖志武.2-D骨架提取算法研究进展[J].四川师范大学学报: 自然科学版, 2009, 32(5): 676-688.

    LIAO Z W. A survey of 2-D skeletonization algorithm [J]. Journal of Sichuan Normal University: Natural Science, 2009, 32(5): 676-688. (in Chinese)

[17] 胡斯淼, 任洪娥, 于鸣, 等.基于向量内积的新型骨架提取方法[J].液晶与显示, 2015, 30(5): 844-850.

    HU S M, REN H E, YU M,et al. A new skeleton extraction method based on vector inner production [J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 844-850. (in Chinese)

江慎旺, 许廷发, 张增, 吴新桥, 黄博, 周筑博. 基于无人机的输电网故障跳线联板识别[J]. 液晶与显示, 2016, 31(12): 1149. 江慎旺, 许廷发, 张增, 吴新桥, 黄博, 周筑博. Recognition algorithm for fault jumper connection plate of transmission network based on UAV[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(12): 1149.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!