Photonics Research, 2015, 3 (6): 06000313, Published Online: Jan. 6, 2016  

Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region Download: 1007次

Author Affiliations
1 Advanced Photonics Center, Southeast University, Nanjing 210096, China
2 Nanjing Normal University, Nanjing 210023, China
Copy Citation Text

Zhengqing Qi, Jie Yao, Liangliang Zhao, Yiping Cui, Changgui Lu. Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region[J]. Photonics Research, 2015, 3(6): 06000313.

References

[1] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, L. D. Negro. Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing. Nano Lett., 2009, 9: 3922-3929.

[2] D. Wang, W. Zhu, Y. Chu, K. B. Crozier. High directivity optical antenna substrates for surface enhanced Raman scattering. Adv. Mater., 2012, 24: 4376-4380.

[3] M. Shioi, H. Jans, K. Lodewijks, P. Van Dorpe, L. Lagae, T. Kawamura. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications. Appl. Phys. Lett., 2014, 104: 243102.

[4] J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, P. Van Dorpe. Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl. Phys. Lett., 2010, 97: 163106.

[5] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464: 392-395.

[6] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, N. J. Halas. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett., 2005, 5: 1569-1574.

[7] E. Hao, G. C. Schatz. Electromagnetic fields around silver nanoparticles and dimmers. J. Chem. Phys., 2004, 120: 357-366.

[8] J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, W. C. Shih. Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale, 2013, 5: 4105-4109.

[9] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, F. J. G. de Abajo. Optical properties of gold nanorings. Phys. Rev. Lett., 2003, 90: 057401.

[10] J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, T. Mallouk. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B, 2005, 71: 235420.

[11] H. C. Kim, X. Cheng. SERS-active substrate based on gap surface plasmon polaritons. Opt. Express, 2009, 17: 17234-17241.

[12] G. Lévêque, O. J. F. Martin. Tunable composite nanoparticle for plasmonics. Opt. Lett., 2006, 31: 2750-2752.

[13] Y. Chu, M. G. Banaee, K. B. Crozier. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies. ACS Nano, 2010, 4: 2804-2810.

[14] Y. Chu, D. Wang, W. Zhu, K. B. Crozier. Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model. Opt. Express, 2011, 19: 14919-14928.

[15] Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett., 2008, 93: 181108.

[16] W. Huang, W. Qian, P. K. Jain, M. A. El-Sayed. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett., 2007, 7: 3227-3234.

[17] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 1972, 6: 4370-4379.

[18] A. Ghoshal, P. G. Kik. Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays. J. Appl. Phys., 2008, 103: 113111.

[19] N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, F. R. Aussenegg. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett., 2003, 82: 3095-3097.

[20] M. G. Banaee, K. B. Crozier. Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano, 2011, 5: 307-314.

[21] A. Ghoshal, I. Divliansky, P. G. Kik. Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays. Appl. Phys. Lett., 2009, 94: 171108.

[22] Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, S. A. Maier. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano, 2010, 4: 1664-1670.

[23] J. Gao, J. F. McMillan, M. C. Wu, J. Zheng, S. Assefa, C. W. Wong. Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes. Appl. Phys. Lett., 2010, 96: 051123.

[24] P. T. Kristensen, C. Van Vlack, S. Hughes. Generalized effective mode volume for leaky optical cavities. Opt. Lett., 2012, 37: 1649-1651.

[25] P. K. Jain, W. Huang, M. A. El-Sayed. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett., 2007, 7: 2080-2088.

[26] P. K. Jain, S. Eustis, M. A. El-Sayed. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B, 2006, 110: 18243-18253.

[27] K. D. Osberg, N. Harris, T. Ozel, J. C. Ku, G. C. Schatz, C. A. Mirkin. Systematic study of antibonding modes in gold nanorod dimers and trimers. Nano Lett., 2014, 14: 6949-6954.

Zhengqing Qi, Jie Yao, Liangliang Zhao, Yiping Cui, Changgui Lu. Tunable double-resonance dimer structure for surface-enhanced Raman scattering substrate in near-infrared region[J]. Photonics Research, 2015, 3(6): 06000313.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!