光学学报, 2005, 25 (6): 835, 网络出版: 2006-05-22   

拟威布尔分布密度函数在荧光寿命成像数据分析中的应用

Application of the Quasi-Weibull Distribution Density Function to Data Analysis of Fluorescence Lifetime Imaging
作者单位
1 浙江工业大学应用数学系, 杭州 310032
2 浙江工业大学应用物理系, 杭州 310032
摘要
荧光寿命法成像技术(FLIM)是一种非常有效、功能强大且能用来分析复杂生物组织和细胞分子的成像技术。传统的荧光寿命成像的数据分析,按某些具有不同寿命、离散的单参量指数模型来描述荧光衰减过程。在生物组织这样既复杂又不均匀的样品中,虽然多参量指数模型能提供比单参量指数模型对实验数据更好的拟合效果,但是离散多参量的假定往往是随意的。提出了拟威布尔分布密度函数可能是生物荧光分子团衰减动力过程的真实再现,并且通过计算证明,对于某些生化感兴趣的荧光分子团的多槽基面效价测定样品的数据,相对于单参量指数与多参量指数衰减函数有更好的一致性。同时讨论了将该荧光衰减模型应用于荧光寿命成像的前景。
Abstract
Fluorescence lifetime imaging is a rather effective and powerful method that can be used to analyze complex biological tissues and molecules. Conventional analyses of fluorescence lifetime data resolve the fluorescence decay profile in terms of discrete single exponential components with distinct lifetimes. In complex, heterogeneous biological samples such as tissue, multi-exponential decay functions can appear to provide a better fit to fluorescence decay data than the assumption of a single-exponential decay, but the assumption of multiple discrete components is essentially arbitrary. Quasi-Weibull distribution density function was likely to provide a truer representation of the underlying fluorescence dynamics. As comparing with those of single exponential and multi-exponential decay functions, the novel model can yield the better goodness of fit using data from multi-well plate assays of chemically and biologically interesting fluorophores. At the same time, the potential application of the quasi-Weibull distribution density function to fluorescence lifetime imaging was discussed.
参考文献

[1] . Comelli, C. D. Andrea et al.. Time-resolved fluorescence imaging in biology and medicine[J]. J. Phys. D: Appl. Phys., 2002, 35(2): 61-76.

[2] . Elson, Stephen E. D. et al.. Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles[J]. Appl. Opt., 2003, 42(16): 2995-3004.

[3] Zheng Wei, Huang Zhiwei, Xie Shusen et al.. Instrinsic microscopic fluorescence and imaging of human lung tissues[J]. Chin. J. Lasers, 2001, A28(7): 587~590 (in Chinese)
郑蔚,黄志伟,谢树森 等. 人肺组织内源性显微荧光特性研究[J]. 中国激光, 2001, A28(7): 587~590

[4] . Lakowicz. On spectral relaxation in proteins[J]. American Society for Photobiology J., 2000, 72(4): 421-437.

[5] . R. Alcala, E. Gratton, F. G. Prendergast. Interpretation of fluorescence decays in proteins using continuous lifetime distributions[J]. Biophys. J., 1987, 51(6): 925-936.

[6] . Ladokhin. Red-edge excitation study of nonexponential fluorescence decay of indole in solution and in a protein[J]. J. Fluorescence, 1999, 9(1): 1-9.

[7] Gao Shumei, Liu Ying, Lan Xiufeng et al.. Investigation of visible laser-induced hemoglobin fluorescence spectra characteristics[J]. Chin. J. Lasers, 2004, 31(7): 893~896 (in Chinese)
高淑梅,刘莹,兰秀风 等. 可见波段Ar+激光诱导血红蛋白荧光光谱特性研究[J]. 中国激光, 2004, 31(7): 893~896

[8] Ignacy Gryczynski, W. Wiczk, M. L. Johnson et al.. Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry[J]. Biophys. Chem., 1988, 32(2~3): 173~185

[9] . S. Ladokhin, S. H. White. Alphas and taus of tryptophan fluorescence in membranes[J]. Biophys. J., 2001, 81(3): 1825-1827.

[10] . G. Szabo, T. M. Stepanik, D. M. Wayner et al.. Conformational heterogeneity of the cooper binding site in azurin[J]. Biophys. J., 1983, 41(1): 233-244.

[11] Michael A. Bean. Probability: The Science of Uncertainty with Applications to Investments, Insurance, and Engineering[M]. Beijing: China Machine Press, 2000. 235~245

[12] . Ricardo Alcala. The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions[J]. J. Chem. Phys., 1994, 101(6): 4578-4584.

[13] . C. Lee, J. Siegel J, S. E. D. Webb et al.. Application of the stretched exponential function to fluorescence lifetime imaging[J]. Biophysical J., 2001, 81(3): 1265-1274.

[14] Lothar Sachs. Applied Statistics: A Handbook of Techniques[M]. Second Edition. New York, Berlin: Spring-Verlag, 1978. 234~325

[15] . Dowling, M. J. Dayel, M. J. Lever et al.. Fluorescence lifetime imaging with picosecond resolution for biomedical applications[J]. Opt. Lett., 1998, 23(10): 810-812.

周明华, 隋成华. 拟威布尔分布密度函数在荧光寿命成像数据分析中的应用[J]. 光学学报, 2005, 25(6): 835. 周明华, 隋成华. Application of the Quasi-Weibull Distribution Density Function to Data Analysis of Fluorescence Lifetime Imaging[J]. Acta Optica Sinica, 2005, 25(6): 835.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!